201 research outputs found

    Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    Full text link
    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we describe an effort underway to develop a comprehensive capability for multiscale simulation of carbon nanotube electronics. We focus in this paper on one element of that hierarchy, the simulation of ballistic CNTFETs by self-consistently solving the Poisson and Schrodinger equations using the non-equilibrium Greens function (NEGF) formalism. The NEGF transport equation is solved at two levels: i) a semi-empirical atomistic level using the pz orbitals of carbon atoms as the basis, and ii) an atomistic mode space approach, which only treats a few subbands in the tube-circumferential direction while retaining an atomistic grid along the carrier transport direction. Simulation examples show that these approaches describe quantum transport effects in nanotube transistors. The paper concludes with a brief discussion of how these semi-empirical device level simulations can be connected to ab initio, continuum, and circuit level simulations in the multi-scale hierarchy

    Diagnosing Potts criticality and two-stage melting in one-dimensional hard-boson models

    Full text link
    We investigate a model of hard-core bosons with infinitely repulsive nearest- and next-nearest-neighbor interactions in one dimension, introduced by Fendley, Sengupta and Sachdev in Phys. Rev. B 69, 075106 (2004). Using a combination of exact diagonalization, tensor network, and quantum Monte Carlo simulations, we show how an intermediate incommensurate phase separates a crystalline and a disordered phase. We base our analysis on a variety of diagnostics, including entanglement measures, fidelity susceptibility, correlation functions, and spectral properties. According to theoretical expectations, the disordered-to-incommensurate-phase transition point is compatible with Berezinskii-Kosterlitz-Thouless universal behaviour. The second transition is instead non-relativistic, with dynamical critical exponent z>1z > 1. For the sake of comparison, we illustrate how some of the techniques applied here work at the Potts critical point present in the phase diagram of the model for finite next-nearest-neighbor repulsion. This latter application also allows to quantitatively estimate which system sizes are needed to match the conformal field theory spectra with experiments performing level spectroscopy.Comment: 18 pages, 14 figure

    The Geometry of Niggli Reduction II: BGAOL -- Embedding Niggli Reduction

    Full text link
    Niggli reduction can be viewed as a series of operations in a six-dimensional space derived from the metric tensor. An implicit embedding of the space of Niggli-reduced cells in a higher dimensional space to facilitate calculation of distances between cells is described. This distance metric is used to create a program, BGAOL, for Bravais lattice determination. Results from BGAOL are compared to the results from other metric-based Bravais lattice determination algorithms

    The Flat Phase of Crystalline Membranes

    Get PDF
    We present the results of a high-statistics Monte Carlo simulation of a phantom crystalline (fixed-connectivity) membrane with free boundary. We verify the existence of a flat phase by examining lattices of size up to 1282128^2. The Hamiltonian of the model is the sum of a simple spring pair potential, with no hard-core repulsion, and bending energy. The only free parameter is the the bending rigidity κ\kappa. In-plane elastic constants are not explicitly introduced. We obtain the remarkable result that this simple model dynamically generates the elastic constants required to stabilise the flat phase. We present measurements of the size (Flory) exponent ν\nu and the roughness exponent ζ\zeta. We also determine the critical exponents η\eta and ηu\eta_u describing the scale dependence of the bending rigidity (κ(q)∼q−η\kappa(q) \sim q^{-\eta}) and the induced elastic constants (λ(q)∼μ(q)∼qηu\lambda(q) \sim \mu(q) \sim q^{\eta_u}). At bending rigidity κ=1.1\kappa = 1.1, we find ν=0.95(5)\nu = 0.95(5) (Hausdorff dimension dH=2/ν=2.1(1)d_H = 2/\nu = 2.1(1)), ζ=0.64(2)\zeta = 0.64(2) and ηu=0.50(1)\eta_u = 0.50(1). These results are consistent with the scaling relation ζ=(2+ηu)/4\zeta = (2+\eta_u)/4. The additional scaling relation η=2(1−ζ)\eta = 2(1-\zeta) implies η=0.72(4)\eta = 0.72(4). A direct measurement of η\eta from the power-law decay of the normal-normal correlation function yields η≈0.6\eta \approx 0.6 on the 1282128^2 lattice.Comment: Latex, 31 Pages with 14 figures. Improved introduction, appendix A and discussion of numerical methods. Some references added. Revised version to appear in J. Phys.

    Commensurate lock-in and incommensurate supersolid phases of hardcore bosons on anisotropic triangular lattices

    Get PDF
    We investigate the interplay between commensurate lock-in and incommensurate supersolid phases of the hardcore bosons at half-filling with anisotropic nearest-neighbor hopping and repulsive interactions on triangular lattice. We use numerical quantum and variational Monte Carlo as well as analytical Schwinger boson mean-field analysis to establish the ground states and phase diagram. It is shown that, for finite size systems, there exist a series of jumps between different supersolid phases as the anisotropy parameter is changed. The density ordering wavevectors are locked to commensurate values and jump between adjacent supersolids. In the thermodynamic limit, however, the magnitude of these jumps vanishes leading to a continuous set of novel incommensurate supersoild phases.Comment: 5 pages, 5 figures, added new results, changed title and conclusio

    Area laws for the entanglement entropy - a review

    Full text link
    Physical interactions in quantum many-body systems are typically local: Individual constituents interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay of correlation functions, but also reflected by scaling laws of a quite profound quantity: The entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an expected extensive behavior. Such "area laws" for the entanglement entropy and related quantities have received considerable attention in recent years. They emerge in several seemingly unrelated fields, in the context of black hole physics, quantum information science, and quantum many-body physics where they have important implications on the numerical simulation of lattice models. In this Colloquium we review the current status of area laws in these fields. Center stage is taken by rigorous results on lattice models in one and higher spatial dimensions. The differences and similarities between bosonic and fermionic models are stressed, area laws are related to the velocity of information propagation, and disordered systems, non-equilibrium situations, classical correlation concepts, and topological entanglement entropies are discussed. A significant proportion of the article is devoted to the quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation. We discuss matrix-product states, higher-dimensional analogues, and states from entanglement renormalization and conclude by highlighting the implications of area laws on quantifying the effective degrees of freedom that need to be considered in simulations.Comment: 28 pages, 2 figures, final versio
    • …
    corecore