364 research outputs found

    Current and Prospective Radiation Detection Systems, Screening Infrastructure and Interpretive Algorithms for the Non-Intrusive Screening of Shipping Container Cargo:A Review

    Get PDF
    The non-intrusive screening of shipping containers at national borders serves as a prominent and vital component in deterring and detecting the illicit transportation of radioactive and/or nuclear materials which could be used for malicious and highly damaging purposes. Screening systems for this purpose must be designed to efficiently detect and identify material that could be used to fabricate radiological dispersal or improvised nuclear explosive devices, while having minimal impact on the flow of cargo and also being affordable for widespread implementation. As part of current screening systems, shipping containers, offloaded from increasingly large cargo ships, are driven through radiation portal monitors comprising plastic scintillators for gamma detection and separate, typically 3He-based, neutron detectors. Such polyvinyl-toluene plastic-based scintillators enable screening systems to meet detection sensitivity standards owing to their economical manufacturing in large sizes, producing high-geometric-efficiency detectors. However, their poor energy resolution fundamentally limits the screening system to making binary “source” or “no source” decisions. To surpass the current capabilities, future generations of shipping container screening systems should be capable of rapid radionuclide identification, activity estimation and source localisation, without inhibiting container transportation. This review considers the physical properties of screening systems (including detector materials, sizes and positions) as well as the data collection and processing algorithms they employ to identify illicit radioactive or nuclear materials. The future aim is to surpass the current capabilities by developing advanced screening systems capable of characterising radioactive or nuclear materials that may be concealed within shipping containers

    On Localization Issues of Mobile Devices

    Get PDF
    Mobile devices, such as sensor nodes, smartphones and smartwatches, are now widely used in many applications. Localization is a highly important topic in wireless networks as well as in many Internet of Things applications. In this thesis, four novel localization schemes of mobile devices are introduced to improve the localization performance in three different areas, like the outdoor, indoor and underwater environments. Firstly, in the outdoor environment, many current localization algorithms are based on the Sequential Monte MCL, the accuracy of which is bounded by the radio range. High computational complexity in the sampling step is another issue of these approaches. Tri-MCL is presented, which significantly improves on the accuracy of the Monte Carlo Localization algorithm. To do this, three different distance measurement algorithms based on range-free approaches are leveraged. Using these, the distances between unknown nodes and anchor nodes are estimated to perform more fine-grained filtering of the particles as well as for weighting the particles in the final estimation step of the algorithm. Simulation results illustrate that the proposed algorithm achieves better accuracy than the MCL and SA-MCL algorithms. Furthermore, it also exhibits high efficiency in the sampling step. Then, in the GPS-denied indoor environment, Twi-Adaboost is proposed, which is a collaborative indoor localization algorithm with the fusion of internal sensors such as the accelerometer, gyroscope and magnetometer from multiple devices. Specifically, the datasets are collected firstly by one person wearing two devices simultaneously: a smartphone and a smartwatch, each collecting multivariate data represented by their internal parameters in a real environment. Then, the datasets from these two devices are evaluated for their strengths and weaknesses in recognizing the indoor position. Based on that, the Twi-AdaBoost algorithm, an interactive ensemble learning method, is proposed to improve the indoor localization accuracy by fusing the co-occurrence information. The performance of the proposed algorithm is assessed on a real-world dataset. The experiment results demonstrate that Twi-AdaBoost achieves a localization error about 0.39 m on average with a low deployment cost, which outperforms the state-of-the-art indoor localization algorithms. Lastly, the characteristics of mobile UWSNs, such as low communication bandwidth, large propagation delay, and sparse deployment, pose challenging issues for successful localization of sensor nodes. In addition, sensor nodes in UWSNs are usually powered by batteries whose replacements introduces high cost and complexity. Thus, the critical problem in UWSNs is to enable each sensor node to find enough anchor nodes in order to localize itself, with minimum energy costs. An Energy-Efficient Localization Algorithm (EELA) is proposed to analyze the decentralized interactions among sensor nodes and anchor nodes. A Single-Leader-Multi-Follower Stackelberg game is utilized to formulate the topology control problem of sensor nodes and anchor nodes by exploiting their available communication opportunities. In this game, the sensor node acts as a leader taking into account factors such as `two-hop' anchor nodes and energy consumption, while anchor nodes act as multiple followers, considering their ability to localize sensor nodes and their energy consumption. I prove that both players select best responses and reach a socially optimal Stackelberg Nash Equilibrium. Simulation results demonstrate that the proposed EELA improves the performance of localization in UWSNs significantly, and in particular the energy cost of sensor nodes. Compared to the baseline schemes, the energy consumption per node is about 48% lower in EELA, while providing a desirable localization coverage, under reasonable error and delay. Based on the EELA scheme, an Adaptive Energy Efficient Localization Algorithm using the Fuzzy game theoretic method (Adaptive EELA) is proposed to solve the environment adaptation problem of EELA. The adaptive neuro-fuzzy method is used as the utility function of the Single-Leader-Multi-Follower Stackelberg game to model the dynamical changes in UWSNs. The proposed Adaptive EELA scheme is able to automatically learn in the offline phase, which is required only once. Then, in the online phase, it can adapt to the environmental changes, such as the densities of nodes or topologies of nodes. Extensive numerical evaluations are conducted under different network topologies and different network node densities. The simulation results demonstrate that the proposed Adaptive EELA scheme achieves about 35% and 66% energy reduction per node on average comparing the state-of-the-art approaches, such as EELA and OLTC, while providing a desirable localization coverage, localization error and localization delay

    DISTORTION-CONTROLLED ISOTROPIC SWELLING AND SELF-ASSEMBLY OF TRIPLY-PERIODIC MINIMAL SURFACES

    Get PDF
    In the first part of this thesis, I propose a method that allows us to construct optimal swelling patterns that are compatible with experimental constraints. This is done using a greedy algorithm that systematically increases the perimeter of the target surface with the help of minimum length cuts. This reduces the areal distortion that comes from the changing Gaussian curvature of the sheet. The results of our greedy cutting algorithm are tested on surfaces of constant and varying Gaussian curvature, and are additionally validated with finite thickness simulations using a modified Seung-Nelson model. In the second part of the thesis, we focus on self-assembly methods as an alternate approach to program specific desired structures. More specifically, we develop theoretical design rules for triply-periodic minimal surfaces (TPMS) and show how their symmetry properties can be used to program a minimum number triangular particle-types that successfully coalesce into the TPMS shape. We finally simulate our design rules with Monte Carlo methods and study the robustness of the self-assembled structures upon changing different system parameters like elastic moduli

    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Get PDF
    The post-911 environment has punctuated the force-multiplying capabilities that Remotely Piloted Aircraft (RPA) provides combatant commanders at all echelons on the battlefield. Not only have unmanned aircraft systems made near-revolutionary impacts on the battlefield, their utility and proliferation in law enforcement, homeland security, humanitarian operations, and commercial applications have likewise increased at a rapid rate. As such, under the Federal Aviation Administration (FAA) Modernization and Reform Act of 2012, the United States Congress tasked the FAA to provide for the safe integration of civil unmanned aircraft systems into the national airspace system (NAS) as soon as practicable, but not later than September 30, 2015. However, a necessary entrance criterion to operate RPAs in the NAS is the ability to Sense and Avoid (SAA) both cooperative and noncooperative air traffic to attain a target level of safety as a traditional manned aircraft platform. The goal of this research effort is twofold: First, develop techniques for calculating optimal avoidance trajectories, and second, develop techniques for estimating an intruder aircraft\u27s trajectory in a stochastic environment. This dissertation describes the optimal control problem associated with SAA and uses a direct orthogonal collocation method to solve this problem and then analyzes these results for different collision avoidance scenarios

    Large-scale Machine Learning in High-dimensional Datasets

    Get PDF
    corecore