657 research outputs found

    Circle-based Eye Center Localization (CECL)

    Full text link
    We propose an improved eye center localization method based on the Hough transform, called Circle-based Eye Center Localization (CECL) that is simple, robust, and achieves accuracy on a par with typically more complex state-of-the-art methods. The CECL method relies on color and shape cues that distinguish the iris from other facial structures. The accuracy of the CECL method is demonstrated through a comparison with 15 state-of-the-art eye center localization methods against five error thresholds, as reported in the literature. The CECL method achieved an accuracy of 80.8% to 99.4% and ranked first for 2 of the 5 thresholds. It is concluded that the CECL method offers an attractive alternative to existing methods for automatic eye center localization.Comment: Published and presented at The 14th IAPR International Conference on Machine Vision Applications, 2015. http://www.mva-org.jp/mva2015

    A. Eye Detection Using Varients of Hough Transform B. Off-Line Signature Verification

    Get PDF
    PART (A): EYE DETECTION USING VARIANTS OF HOUGH TRANSFORM: Broadly eye detection is the process of tracking the location of human eye in a face image. Previous approaches use complex techniques like neural network, Radial Basis Function networks, Multi-Layer Perceptrons etc. In the developed project human eye is modeled as a circle (iris; the black circular region of eye) enclosed inside an ellipse (eye-lashes). Due to the sudden intensity variations in the iris with respect the inner region of eye-lashes the probability of false acceptance is very less. Since the image taken is a face image the probability of false acceptance further reduces. Hough transform is used for circle (iris) and ellipse (eye-lash) detection. Hough transform was the obvious choice because of its resistance towards the holes in the boundary and noise present in the image. Image smoothing is done to reduce the presence of noise in the image further it makes the image better for further processing like edge detection (Prewitt method). Compared to the aforementioned models the proposed model is simple and efficient. The proposed model can further be improved by including various features like orientation angle of eye-lashes (which is assumed constant in the proposed model), and by making the parameters adaptive. PART (B): OFF-LINE SIGNATURE VERIFICATION: Hand-written signature is widely used for authentication and identification of individual. It has been the target for fraudulence ever since. A novel off-line signature verification algorithm has been developed and tested successfully. Since the hand-written signature can be random, because of presence of various curves and features, techniques like character recognition cannot be applied for signature verification. The proposed algorithm incorporates a soft-computing technique “CLUSTERING” for extraction of feature points from the image of the signature. These feature points or centers are updated using the clustering update equations for required number of times, then these acts as extracted feature points of the signature image. To avoid interpersonal variation 6 to 8 signature images of the same person are taken and feature points are trained. These trained feature points are compared with the test signature images and based on a specific threshold, the signature is declared original or forgery. This approach works well if there is a high variation in the original signature, but for signatures with low variation, it produces incorrect results

    Towards Accurate Pupil Detection Based on Morphology and Hough Transform

    Get PDF
    التعرف التلقائي على الأفراد مهم للغاية في العصور الحديثة. ظهرت تقنيات القياس الحيوي كإجابة على مسألة التعرف الفردي التلقائي. تميل هذه الورقة إلى إعطاء تقنية لاكتشاف البؤبؤ وهي مزيج من العمليات المورفولوجية السهلة ، و تحويل Hough (HT) . يتم تقسيم المنطقة الدائرية للعين والبؤبؤ بواسطة المرشح المورفولوجي وكذلك تحويل Hough حيث تم تحويل منطقة Iris القزحية المحلية إلى كتلة مستطيلة لغرض حساب التناقضات في الصورة. يتم تنفيذ هذه الطريقة واختبارها على قاعدة بيانات صور قزحية الأكاديمية الصينية للعلوم(CASIA V4)  لـ 249  شخص وقاعدة بيانات IIT Delhi (IITD) iris v1 باستخدام ماتلاب  MATLAB 2017a  . تتميز هذه الطريقة بدقة عالية في ايجاد المركز وتبلغ نسبة الوصول إلى دائرة نصف قطرها 97٪ لـ 2268 قزحية على صور CASIA V4 و 99.77٪ لصور قزحية 2240 على IITD، والسرعة مقبولة مقارنة بسرعة الكشف في الوقت الحقيقي والأداء المستقر. Automatic recognition of individuals is very important in modern eras. Biometric techniques have emerged as an answer to the matter of automatic individual recognition. This paper tends to give a technique to detect pupil which is a mixture of easy morphological operations and Hough Transform (HT) is presented in this paper. The circular area of the eye and pupil is divided by the morphological filter as well as the Hough Transform (HT) where the local Iris area has been converted into a rectangular block for the purpose of calculating inconsistencies in the image. This method is implemented and tested on the Chinese Academy of Sciences (CASIA V4) iris image database 249 person and the IIT Delhi (IITD) iris database v1 using MATLAB 2017a. This method has high accuracy in the center and radius finding reaches 97% for 2268 iris on CASIA V4 image and 99.77% for 2240 iris images on IITD, the speed is acceptable compared to the real-time detection speed and stable performance

    Accurate Pupil Features Extraction Based on New Projection Function

    Get PDF
    Accurate pupil features extraction is a key step for iris recognition. In this paper, we propose a new algorithm to extract pupil features precisely within gray level iris images. The angular integral projection function (AIPF) is developed as a general function to perform integral projection along angular directions, both the well known vertical and horizontal integral projection functions can be viewed as special cases of AIPF. Another implementation for AIPF based on localized Radon transform is also presented. First, the approximate position of pupil center is detected. Then, a set of pupil's radial boundary points are detected using AIPF. Finally, a circle to the detected boundary points is fitted. Experimental results on 2655 iris images from CASIA V3.0 show high accuracy with rapid execution time

    Iris localisation using Fuzzy Centre Detection (FCD) scheme and active contour snake

    Get PDF
    Iris localisation is a crucial operation in iris recognition algorithm and also in applications, where irises are the main target object. This paper presents a new method to localise iris by using Fuzzy Centre Detection (FCD) scheme and active contour Snake. FCD scheme which consists of four fuzzy membership functions is purposely designed to find a centre of the iris. By using the centre of iris as the reference point, an active contour Snake algorithm is employed to localise the inner and outer of iris boundary. This proposed method is tested and validated with two categories of image database; iris databases and face database. For iris database, UBIRIS.v1, UBIRIS.v2, CASIA.v1, CASIA.v2, MMU1 and MMU2 are used. Whilst for face databases, MUCT, AT&T, Georgia Tech and ZJUblink databases are chosen to evaluate the capability of proposed method to deal with the small size of the iris in the image database. Based on the experimental result, the proposed method shows promising results for both types of databases, including comparison with the some existing iris localisation algorithm

    Fatigue detection using computer vision

    Full text link
    Long duration driving is a significant cause of fatigue related accidents of cars, airplanes, trains and other means of transport. This paper presents a design of a detection system which can be used to detect fatigue in drivers. The system is based on computer vision with main focus on eye blink rate. We propose an algorithm for eye detection that is conducted through a process of extracting the face image from the video image followed by evaluating the eye region and then eventually detecting the iris of the eye using the binary image. The advantage of this system is that the algorithm works without any constraint of the background as the face is detected using a skin segmentation technique. The detection performance of this system was tested using video images which were recorded under laboratory conditions. The applicability of the system is discussed in light of fatigue detection for drivers

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Semi-Supervised Pattern Recognition and Machine Learning for Eye-Tracking

    Get PDF
    The first step in monitoring an observer’s eye gaze is identifying and locating the image of their pupils in video recordings of their eyes. Current systems work under a range of conditions, but fail in bright sunlight and rapidly varying illumination. A computer vision system was developed to assist with the recognition of the pupil in every frame of a video, in spite of the presence of strong first-surface reflections off of the cornea. A modified Hough Circle detector was developed that incorporates knowledge that the pupil is darker than the surrounding iris of the eye, and is able to detect imperfect circles, partial circles, and ellipses. As part of processing the image is modified to compensate for the distortion of the pupil caused by the out-of-plane rotation of the eye. A sophisticated noise cleaning technique was developed to mitigate first surface reflections, enhance edge contrast, and reduce image flare. Semi-supervised human input and validation is used to train the algorithm. The final results are comparable to those achieved using a human analyst, but require only a tenth of the human interaction
    corecore