474 research outputs found

    A novel method for computation of the discrete Fourier transform over characteristic two finite field of even extension degree

    Full text link
    A novel method for computation of the discrete Fourier transform over a finite field with reduced multiplicative complexity is described. If the number of multiplications is to be minimized, then the novel method for the finite field of even extension degree is the best known method of the discrete Fourier transform computation. A constructive method of constructing for a cyclic convolution over a finite field is introduced.Comment: 35 pages. Submitted to IEEE Transactions on Information Theor

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Polynomial Transforms Based on Induction

    Full text link
    A polynomial transform is the multiplication of an input vector x\in\C^n by a matrix \PT_{b,\alpha}\in\C^{n\times n}, whose (k,)(k,\ell)-th element is defined as p(αk)p_\ell(\alpha_k) for polynomials p_\ell(x)\in\C[x] from a list b={p0(x),,pn1(x)}b=\{p_0(x),\dots,p_{n-1}(x)\} and sample points \alpha_k\in\C from a list α={α0,,αn1}\alpha=\{\alpha_0,\dots,\alpha_{n-1}\}. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. Important examples include the discrete Fourier and cosine transforms. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel O(nlogn)O(n\log{n}) general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4.Comment: 19 pages. Submitted to SIAM Journal on Matrix Analysis and Application

    Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus

    Get PDF
    We present a probabilistic Las Vegas algorithm for computing the local zeta function of a genus-gg hyperelliptic curve defined over Fq\mathbb F_q with explicit real multiplication (RM) by an order Z[η]\Z[\eta] in a degree-gg totally real number field. It is based on the approaches by Schoof and Pila in a more favorable case where we can split the \ell-torsion into gg kernels of endomorphisms, as introduced by Gaudry, Kohel, and Smith in genus 2. To deal with these kernels in any genus, we adapt a technique that the author, Gaudry, and Spaenlehauer introduced to model the \ell-torsion by structured polynomial systems. Applying this technique to the kernels, the systems we obtain are much smaller and so is the complexity of solving them. Our main result is that there exists a constant c>0c>0 such that, for any fixed gg, this algorithm has expected time and space complexity O((logq)c)O((\log q)^{c}) as qq grows and the characteristic is large enough. We prove that c9c\le 9 and we also conjecture that the result still holds for c=7c=7.Comment: To appear in Journal of Complexity. arXiv admin note: text overlap with arXiv:1710.0344

    Faster all-pairs shortest paths via circuit complexity

    Full text link
    We present a new randomized method for computing the min-plus product (a.k.a., tropical product) of two n×nn \times n matrices, yielding a faster algorithm for solving the all-pairs shortest path problem (APSP) in dense nn-node directed graphs with arbitrary edge weights. On the real RAM, where additions and comparisons of reals are unit cost (but all other operations have typical logarithmic cost), the algorithm runs in time n32Ω(logn)1/2\frac{n^3}{2^{\Omega(\log n)^{1/2}}} and is correct with high probability. On the word RAM, the algorithm runs in n3/2Ω(logn)1/2+n2+o(1)logMn^3/2^{\Omega(\log n)^{1/2}} + n^{2+o(1)}\log M time for edge weights in ([0,M]Z){}([0,M] \cap {\mathbb Z})\cup\{\infty\}. Prior algorithms used either n3/(logcn)n^3/(\log^c n) time for various c2c \leq 2, or O(Mαnβ)O(M^{\alpha}n^{\beta}) time for various α>0\alpha > 0 and β>2\beta > 2. The new algorithm applies a tool from circuit complexity, namely the Razborov-Smolensky polynomials for approximately representing AC0[p]{\sf AC}^0[p] circuits, to efficiently reduce a matrix product over the (min,+)(\min,+) algebra to a relatively small number of rectangular matrix products over F2{\mathbb F}_2, each of which are computable using a particularly efficient method due to Coppersmith. We also give a deterministic version of the algorithm running in n3/2logδnn^3/2^{\log^{\delta} n} time for some δ>0\delta > 0, which utilizes the Yao-Beigel-Tarui translation of AC0[m]{\sf AC}^0[m] circuits into "nice" depth-two circuits.Comment: 24 pages. Updated version now has slightly faster running time. To appear in ACM Symposium on Theory of Computing (STOC), 201

    Doctor of Philosophy

    Get PDF
    dissertationAbstraction plays an important role in digital design, analysis, and verification, as it allows for the refinement of functions through different levels of conceptualization. This dissertation introduces a new method to compute a symbolic, canonical, word-level abstraction of the function implemented by a combinational logic circuit. This abstraction provides a representation of the function as a polynomial Z = F(A) over the Galois field F2k , expressed over the k-bit input to the circuit, A. This representation is easily utilized for formal verification (equivalence checking) of combinational circuits. The approach to abstraction is based upon concepts from commutative algebra and algebraic geometry, notably the Grobner basis theory. It is shown that the polynomial F(A) can be derived by computing a Grobner basis of the polynomials corresponding to the circuit, using a specific elimination term order based on the circuits topology. However, computing Grobner bases using elimination term orders is infeasible for large circuits. To overcome these limitations, this work introduces an efficient symbolic computation to derive the word-level polynomial. The presented algorithms exploit i) the structure of the circuit, ii) the properties of Grobner bases, iii) characteristics of Galois fields F2k , and iv) modern algorithms from symbolic computation. A custom abstraction tool is designed to efficiently implement the abstraction procedure. While the concept is applicable to any arbitrary combinational logic circuit, it is particularly powerful in verification and equivalence checking of hierarchical, custom designed and structurally dissimilar Galois field arithmetic circuits. In most applications, the field size and the datapath size k in the circuits is very large, up to 1024 bits. The proposed abstraction procedure can exploit the hierarchy of the given Galois field arithmetic circuits. Our experiments show that, using this approach, our tool can abstract and verify Galois field arithmetic circuits up to 1024 bits in size. Contemporary techniques fail to verify these types of circuits beyond 163 bits and cannot abstract a canonical representation beyond 32 bits
    corecore