4,379 research outputs found

    A taxonomy for emergency service station location problem

    Get PDF
    The emergency service station (ESS) location problem has been widely studied in the literature since 1970s. There has been a growing interest in the subject especially after 1990s. Various models with different objective functions and constraints have been proposed in the academic literature and efficient solution techniques have been developed to provide good solutions in reasonable times. However, there is not any study that systematically classifies different problem types and methodologies to address them. This paper presents a taxonomic framework for the ESS location problem using an operations research perspective. In this framework, we basically consider the type of the emergency, the objective function, constraints, model assumptions, modeling, and solution techniques. We also analyze a variety of papers related to the literature in order to demonstrate the effectiveness of the taxonomy and to get insights for possible research directions

    A Chance Constrained Programming Model for Reliable Emergency Vehicles Relocation Problem

    Get PDF
    AbstractEmergency vehicles relocation is one mechanism of increasing preparedness for potential emergencies. This paper addresses the problem of designing reliable emergency vehicles relocation system. Under this respect, we extend the DYNACO model with chance-constrained programming framework for the optimal redeployment of emergency vehicles. The model deals with the availability of emergency vehicles by approximate hypercube. In addition, other random elements including travel time and emergency demand are taken into account in the model. Solution procedure based on genetic algorithm and Monte-Carlo simulation is developed to solve the stochastic model. Computational experiences are reported to illustrate the performance and the effectiveness of the proposed solution

    Fire truck relocation during major incidents

    Get PDF
    The effectiveness of a fire department is largely determined by its ability to respond to incidents in a timely manner. To do so, fire departments typically have fire stations spread evenly across the region, and dispatch the closest truck(s) whenever a new incident occurs. However, large gaps in coverage may arise in the case of a major incident that requires many nearby fire trucks over a long period of time, substantially increasing response times for emergencies that occur subsequently. We propose a heuristic for relocating idle trucks during a major incident in order to retain good coverage. This is done by solving a mathematical program that takes into account the location of the available fire trucks and the historic spatial distribution of incidents. This heuristic allows the user to balance the coverage and the number of truck movements. Using extensive simulation experiments we test the heuristic for the operations of the Fire Department of Amsterdam‐Amstelland, and compare it against three other benchmark strategies in a simulation fitted using 10 years of historical data. We demonstrate substantial improvement over the current relocation policy, and show that not relocating during major incidents may lead to a significant decrease in performance

    Optimization Based Decision Support Tools for Fire and Rescue Resource Planning

    Full text link

    Dispatching Fire Trucks under Stochastic Driving Times

    Get PDF
    In this paper we discuss optimal dispatching of fire trucks, based on a particular dispatching problem that arises at the Amsterdam Fire Department, where two fire trucks are send to the same incident location for a quick response. We formulate the dispatching problem as a Markov Decision Process, and numerically obtain the optimal dispatching decisions using policy iteration. We show that the fraction of late arrivals can be significantly reduced by deviating from current practice of dispatching the closest available trucks, with a relative improvement of on average about 20%20\%, and over 50%50\% for certain instances. We also show that driving-time correlation has a non-negligible impact on decision making, and if ignored may lead to performance decrease of over 20%20\% in certain cases. As the optimal policy cannot be computed for problems of realistic size due to the computational complexity of the policy iteration algorithm, we propose a dispatching heuristic based on a queueing approximation for the state of the network. We show that the performance of this heuristic is close to the optimal policy, and requires significantly less computational effort.Comment: Submitted to Computers and Operations Research (December 08, 2018

    Using genetic algorithms to optimise current and future health planning - the example of ambulance locations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ambulance response time is a crucial factor in patient survival. The number of emergency cases (EMS cases) requiring an ambulance is increasing due to changes in population demographics. This is decreasing ambulance response times to the emergency scene. This paper predicts EMS cases for 5-year intervals from 2020, to 2050 by correlating current EMS cases with demographic factors at the level of the census area and predicted population changes. It then applies a modified grouping genetic algorithm to compare current and future optimal locations and numbers of ambulances. Sets of potential locations were evaluated in terms of the (current and predicted) EMS case distances to those locations.</p> <p>Results</p> <p>Future EMS demands were predicted to increase by 2030 using the model (R<sup>2 </sup>= 0.71). The optimal locations of ambulances based on future EMS cases were compared with current locations and with optimal locations modelled on current EMS case data. Optimising the location of ambulance stations locations reduced the average response times by 57 seconds. Current and predicted future EMS demand at modelled locations were calculated and compared.</p> <p>Conclusions</p> <p>The reallocation of ambulances to optimal locations improved response times and could contribute to higher survival rates from life-threatening medical events. Modelling EMS case 'demand' over census areas allows the data to be correlated to population characteristics and optimal 'supply' locations to be identified. Comparing current and future optimal scenarios allows more nuanced planning decisions to be made. This is a generic methodology that could be used to provide evidence in support of public health planning and decision making.</p

    STRATEGIES TO IMPROVE THE EFFICIENCY OF EMERGENCY MEDICAL SERVICE (EMS) SYSTEMS UNDER MORE REALISTIC CONDITIONS

    Get PDF
    Emergency medical service (EMS) systems provide medical care to pre-hospital patients who need rapid response and transportation. This dissertation proposes a new realistic approach for EMS systems in two major focuses: multiple unit dispatching and relocation strategies. This work makes recommendations for multiple-unit dispatch to multiple call priorities based on simulation optimization and heuristics. The objective is to maximize the expected survival rate. Simulation models are proposed to determine the optimization. A heuristic algorithm is developed for large-scale problems. Numerical results show that dispatching while considering call priorities, rather than always dispatching the closest medical units, could improve the effectiveness of EMS systems. Additionally, we extend the model of multiple-unit dispatch to examine fairness between call priorities. We consider the potentially-life-threatening calls which could be upgraded to life-threatening. We formulate the fairness problem as an integer programming model solved using simulation optimization. Taking into account fairness between priorities improves the performance of EMS systems while still operating at high efficiency. As another focus, we consider dynamic relocation strategy using a nested-compliance table policy. For each state of the EMS systems, a decision must be made regarding exactly which ambulances will be allocated to which stations. We determine the optimal nested-compliance table in order to maximize the expected coverage, in the binary sense, as will be later discussed. We formulate the nested-compliance table model as an integer program, for which we approximate the steady-state probabilities of EMS system to use as parameters to our model. Simulation is used to investigate the performance of the model and to compare the results to a static policy based on the adjusted maximum expected covering location problem (AMEXCLP). Additionally, we extend the nested-compliance table model to consider an upper bound on relocation time. We analyze the decision regarding how to partition the service area into smaller sub-areas (districts) in which each sub-area operates independently under separate relocation strategies. We embed the nested-compliance table model into a tabu search heuristic algorithm. Iteration is used to search for a near-optimal solution. The performance of the tabu search heuristic and AMEXCLP are compared in terms of the realized expected coverage of EMS systems

    Integrative Model for Quantitative Evaluation of Selection Telecommunication Tower Site

    Get PDF
    This paper analyzes the weight of impact factors on selection the antenna places for mobile telecommunication system in Jordan. The new technique plays a lead role in divided area and selects the place of antennas' sites. The main objective of this research is to minimize the antenna numbers in order to reduce the cost. Research follows flowcharting categories and stages as: The first stage aim to classify the effective factors on the: signal radius, better position of antenna from candidate points, reserved area, and non-preferring position. The second stage focuses on finding the effective weight of these factors on the decision. The third stage suggest the new proposed approach by implement the MCLP and P-center problems in linear function. The last stage has the pseudo code for the proposed approach, where the proposed approach provides the solution that helps the planners in telecommunication industry and in related government agencies make informed position of the antennas

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models
    • 

    corecore