10,062 research outputs found

    A note on the convergence of parametrised non-resonant invariant manifolds

    Full text link
    Truncated Taylor series representations of invariant manifolds are abundant in numerical computations. We present an aposteriori method to compute the convergence radii and error estimates of analytic parametrisations of non-resonant local invariant manifolds of a saddle of an analytic vector field, from such a truncated series. This enables us to obtain local enclosures, as well as existence results, for the invariant manifolds

    Wigner's Dynamical Transition State Theory in Phase Space: Classical and Quantum

    Full text link
    A quantum version of transition state theory based on a quantum normal form (QNF) expansion about a saddle-centre-...-centre equilibrium point is presented. A general algorithm is provided which allows one to explictly compute QNF to any desired order. This leads to an efficient procedure to compute quantum reaction rates and the associated Gamov-Siegert resonances. In the classical limit the QNF reduces to the classical normal form which leads to the recently developed phase space realisation of Wigner's transition state theory. It is shown that the phase space structures that govern the classical reaction d ynamicsform a skeleton for the quantum scattering and resonance wavefunctions which can also be computed from the QNF. Several examples are worked out explicitly to illustrate the efficiency of the procedure presented.Comment: 132 pages, 31 figures, corrected version, Nonlinearity, 21 (2008) R1-R11

    Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations

    Full text link
    We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of R^3. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and also is the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical ``vortex-bubble''. We show that this occurs near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pearls that creates multiple copies of the original spherical structure for an iterate of the map.Comment: 53 pages, 29 figure

    Quantum Theory of Reactive Scattering in Phase Space

    Get PDF
    We review recent results on quantum reactive scattering from a phase space perspective. The approach uses classical and quantum versions of normal form theory and the perspective of dynamical systems theory. Over the past ten years the classical normal form theory has provided a method for realizing the phase space structures that are responsible for determining reactions in high dimensional Hamiltonian systems. This has led to the understanding that a new (to reaction dynamics) type of phase space structure, a {\em normally hyperbolic invariant manifold} (or, NHIM) is the "anchor" on which the phase space structures governing reaction dynamics are built. The quantum normal form theory provides a method for quantizing these phase space structures through the use of the Weyl quantization procedure. We show that this approach provides a solution of the time-independent Schr\"odinger equation leading to a (local) S-matrix in a neighborhood of the saddle point governing the reaction. It follows easily that the quantization of the directional flux through the dividing surface with the properties noted above is a flux operator that can be expressed in a "closed form". Moreover, from the local S-matrix we easily obtain an expression for the cumulative reactio probability (CRP). Significantly, the expression for the CRP can be evaluated without the need to compute classical trajectories. The quantization of the NHIM is shown to lead to the activated complex, and the lifetimes of quantum states initialized on the NHIM correspond to the Gamov-Siegert resonances. We apply these results to the collinear nitrogen exchange reaction and a three degree-of-freedom system corresponding to an Eckart barrier coupled to two Morse oscillators.Comment: 59 pages, 13 figure

    Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations

    Get PDF
    In a nonlinear oscillatory system, spectral submanifolds (SSMs) are the smoothest invariant manifolds tangent to linear modal subspaces of an equilibrium. Amplitude-frequency plots of the dynamics on SSMs provide the classic backbone curves sought in experimental nonlinear model identification. We develop here a methodology to compute analytically both the shape of SSMs and their corresponding backbone curves from a data-assimilating model fitted to experimental vibration signals. Using examples of both synthetic and real experimental data, we demonstrate that this approach reproduces backbone curves with high accuracy.Comment: 32 pages, 4 figure

    Analytical description of the structure of chaos

    Full text link
    We consider analytical formulae that describe the chaotic regions around the main periodic orbit (x=y=0)(x=y=0) of the H\'{e}non map. Following our previous paper (Efthymiopoulos, Contopoulos, Katsanikas 20142014) we introduce new variables (ξ,η)(\xi, \eta) in which the product ξη=c\xi\eta=c (constant) gives hyperbolic invariant curves. These hyperbolae are mapped by a canonical transformation Φ\Phi to the plane (x,y)(x,y), giving "Moser invariant curves". We find that the series Φ\Phi are convergent up to a maximum value of c=cmaxc=c_{max}. We give estimates of the errors due to the finite truncation of the series and discuss how these errors affect the applicability of analytical computations. For values of the basic parameter κ\kappa of the H\'{e}non map smaller than a critical value, there is an island of stability, around a stable periodic orbit SS, containing KAM invariant curves. The Moser curves for c0.32c \leq 0.32 are completely outside the last KAM curve around SS, the curves with 0.32<c<0.410.32<c<0.41 intersect the last KAM curve and the curves with 0.41c<cmax0.490.41\leq c< c_{max} \simeq 0.49 are completely inside the last KAM curve. All orbits in the chaotic region around the periodic orbit (x=y=0)(x=y=0), although they seem random, belong to Moser invariant curves, which, therefore define a "structure of chaos". Orbits starting close and outside the last KAM curve remain close to it for a stickiness time that is estimated analytically using the series Φ\Phi. We finally calculate the periodic orbits that accumulate close to the homoclinic points, i.e. the points of intersection of the asymptotic curves from x=y=0x=y=0, exploiting a method based on the self-intersections of the invariant Moser curves. We find that all the computed periodic orbits are generated from the stable orbit SS for smaller values of the H\'{e}non parameter κ\kappa, i.e. they are all regular periodic orbits.Comment: 22 pages, 9 figure

    Two-dimensional global manifolds of vector fields

    Get PDF
    We describe an efficient algorithm for computing two-dimensional stable and unstable manifolds of three-dimensional vector fields. Larger and larger pieces of a manifold are grown until a sufficiently long piece is obtained. This allows one to study manifolds geometrically and obtain important features of dynamical behavior. For illustration, we compute the stable manifold of the origin spiralling into the Lorenz attractor, and an unstable manifold in zeta(3)-model converging to an attracting limit cycle

    Embeddings of 3-manifolds in S^4 from the point of view of the 11-tetrahedron census

    Full text link
    This is a collection of notes on embedding problems for 3-manifolds. The main question explored is `which 3-manifolds embed smoothly in the 4-sphere?' The terrain of exploration is the Burton/Martelli/Matveev/Petronio census of triangulated prime closed 3-manifolds built from 11 or less tetrahedra. There are 13766 manifolds in the census, of which 13400 are orientable. Of the 13400 orientable manifolds, only 149 of them have hyperbolic torsion linking forms and are thus candidates for embedability in the 4-sphere. The majority of this paper is devoted to the embedding problem for these 149 manifolds. At present 41 are known to embed. Among the remaining manifolds, embeddings into homotopy 4-spheres are constructed for 4. 67 manifolds are known to not embed in the 4-sphere. This leaves 37 unresolved cases, of which only 3 are geometric manifolds i.e. having a trivial JSJ-decomposition.Comment: 58 pages, 80+ figures. V6: Included references to libraries valid in Regina 5.0+. Incorporated changes suggested by Ahmed Issa, following from his techniques developed with McCoy. Included a few recent references. To appear in Experimental Mathematic
    corecore