179 research outputs found

    On weighted time optimal control for linear hybrid automata using quantifier elimination

    Get PDF
    This paper considers the optimal control problem for linear hybrid automata. In particular, it is shown that the problem can be transformed into a constrained optimization problem whose constraints are a set of inequalities with quantifiers. Quantifier Elimination (QE) techniques are employed in order to derive quantifier free inequalities that are linear. The optimal cost is obtained using linear programming. The optimal switching times and optimal continuous control inputs are computed and used in order to derive the optimal hybrid controller. Our results areapplied to an air traffic management example

    Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation (extended abstract)

    Full text link
    In this paper, a novel computational technique for finite discrete approximation of continuous dynamical systems suitable for a significant class of biochemical dynamical systems is introduced. The method is parameterized in order to affect the imposed level of approximation provided that with increasing parameter value the approximation converges to the original continuous system. By employing this approximation technique, we present algorithms solving the reachability problem for biochemical dynamical systems. The presented method and algorithms are evaluated on several exemplary biological models and on a real case study.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Graph transformation systems, Petri nets and Semilinear Sets: Checking for the Absence of Forbidden Paths in Graphs

    Get PDF
    We introduce an analysis method that checks for the absence of (Euler) paths or cycles in the set of graphs reachable from a start graph via graph transformation rules. This technique is based on the approximation of graph transformation systems by Petri nets and on semilinear sets of markings. An important application is deadlock analysis in distributed systems

    Reachability computation for hybrid systems with Ariadne

    Get PDF
    Ariadne is an in-progress open environment to design algorithms for computing with hybrid automata, that relies on a rigorous computable analysis theory to represent geometric objects, in order to achieve provable approximation bounds along the computations. In this paper we discuss the problem of reachability analysis of hybrid automata to decide safety properties. We describe in details the algorithm used in Ariadne to compute over-approximations of reachable sets. Then we show how it works on a simple example. Finally, we discuss the lower-approximation approach to the reachability problem and how to extend Ariadne to support it

    Parameter Synthesis for Markov Models

    Full text link
    Markov chain analysis is a key technique in reliability engineering. A practical obstacle is that all probabilities in Markov models need to be known. However, system quantities such as failure rates or packet loss ratios, etc. are often not---or only partially---known. This motivates considering parametric models with transitions labeled with functions over parameters. Whereas traditional Markov chain analysis evaluates a reliability metric for a single, fixed set of probabilities, analysing parametric Markov models focuses on synthesising parameter values that establish a given reliability or performance specification φ\varphi. Examples are: what component failure rates ensure the probability of a system breakdown to be below 0.00000001?, or which failure rates maximise reliability? This paper presents various analysis algorithms for parametric Markov chains and Markov decision processes. We focus on three problems: (a) do all parameter values within a given region satisfy φ\varphi?, (b) which regions satisfy φ\varphi and which ones do not?, and (c) an approximate version of (b) focusing on covering a large fraction of all possible parameter values. We give a detailed account of the various algorithms, present a software tool realising these techniques, and report on an extensive experimental evaluation on benchmarks that span a wide range of applications.Comment: 38 page

    Kronecker representation and decompositional analysis of closed queueing networks with phase-type service distributions and arbitrary buffer sizes

    Get PDF
    Two approximative fixed-point iterative methods based on decomposition for closed queueing networks with Coxian service distributions and arbitrary buffer sizes are extended to include phase-type service distributions. The irreducible Markov chain associated with each subnetwork in the respective decompositions is represented hierarchically using Kronecker products. The two methods are implemented in a software tool capable of computing the steady-state probability vector of each subnetwork by a multilevel method at each fixed-point iteration and are compared with other methods for accuracy and efficiency. Numerical results indicate that there is a niche filled by the two approximative methods

    Acta Cybernetica : Tomus 1. Fasciculus 3.

    Get PDF
    corecore