6,251 research outputs found

    Stream cipher based on quasigroup string transformations in Zp∗Z_p^*

    Full text link
    In this paper we design a stream cipher that uses the algebraic structure of the multiplicative group \bbbz_p^* (where p is a big prime number used in ElGamal algorithm), by defining a quasigroup of order p−1p-1 and by doing quasigroup string transformations. The cryptographical strength of the proposed stream cipher is based on the fact that breaking it would be at least as hard as solving systems of multivariate polynomial equations modulo big prime number pp which is NP-hard problem and there are no known fast randomized or deterministic algorithms for solving it. Unlikely the speed of known ciphers that work in \bbbz_p^* for big prime numbers pp, the speed of this stream cipher both in encryption and decryption phase is comparable with the fastest symmetric-key stream ciphers.Comment: Small revisions and added reference

    The Galois Complexity of Graph Drawing: Why Numerical Solutions are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings

    Get PDF
    Many well-known graph drawing techniques, including force directed drawings, spectral graph layouts, multidimensional scaling, and circle packings, have algebraic formulations. However, practical methods for producing such drawings ubiquitously use iterative numerical approximations rather than constructing and then solving algebraic expressions representing their exact solutions. To explain this phenomenon, we use Galois theory to show that many variants of these problems have solutions that cannot be expressed by nested radicals or nested roots of low-degree polynomials. Hence, such solutions cannot be computed exactly even in extended computational models that include such operations.Comment: Graph Drawing 201

    Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers

    Full text link
    This paper introduces a new sweeping preconditioner for the iterative solution of the variable coefficient Helmholtz equation in two and three dimensions. The algorithms follow the general structure of constructing an approximate LDLtLDL^t factorization by eliminating the unknowns layer by layer starting from an absorbing layer or boundary condition. The central idea of this paper is to approximate the Schur complement matrices of the factorization using moving perfectly matched layers (PMLs) introduced in the interior of the domain. Applying each Schur complement matrix is equivalent to solving a quasi-1D problem with a banded LU factorization in the 2D case and to solving a quasi-2D problem with a multifrontal method in the 3D case. The resulting preconditioner has linear application cost and the preconditioned iterative solver converges in a number of iterations that is essentially indefinite of the number of unknowns or the frequency. Numerical results are presented in both two and three dimensions to demonstrate the efficiency of this new preconditioner.Comment: 25 page

    A sparse decomposition of low rank symmetric positive semi-definite matrices

    Get PDF
    Suppose that A∈RN×NA \in \mathbb{R}^{N \times N} is symmetric positive semidefinite with rank K≤NK \le N. Our goal is to decompose AA into KK rank-one matrices ∑k=1KgkgkT\sum_{k=1}^K g_k g_k^T where the modes {gk}k=1K\{g_{k}\}_{k=1}^K are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where AA is the covariance function and is intractable to solve in general. In this paper, we partition the indices from 1 to NN into several patches and propose to quantify the sparseness of a vector by the number of patches on which it is nonzero, which is called patch-wise sparseness. Our aim is to find the decomposition which minimizes the total patch-wise sparseness of the decomposed modes. We propose a domain-decomposition type method, called intrinsic sparse mode decomposition (ISMD), which follows the "local-modes-construction + patching-up" procedure. The key step in the ISMD is to construct local pieces of the intrinsic sparse modes by a joint diagonalization problem. Thereafter a pivoted Cholesky decomposition is utilized to glue these local pieces together. Optimal sparse decomposition, consistency with different domain decomposition and robustness to small perturbation are proved under the so called regular-sparse assumption (see Definition 1.2). We provide simulation results to show the efficiency and robustness of the ISMD. We also compare the ISMD to other existing methods, e.g., eigen decomposition, pivoted Cholesky decomposition and convex relaxation of sparse principal component analysis [25] and [40]

    Conjugacy in Artin groups and applications to the classification of surfaces

    Full text link
    We show thatthe double reversing algorithm proposed by dehornoy for solving the word problem in the braid group can also be used to recognize the conjugates of powers of the generators in an Artin group of spherical type. The proof uses a characterization of these powers in terms of their fractional decomposition. This algorithm could have potential applications to braid-based cryptography; it also provides a fast method for testing a necessary condition in the classification of surfaces in algebraic geometry
    • …
    corecore