4 research outputs found

    The Role of Computers in Research and Development at Langley Research Center

    Get PDF
    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics

    Competitive power control of distributed power plants

    Get PDF
    Joint Doctoral Programme in Electric Energy Systems : Universidad de M谩laga, Universidad de Sevilla, Universidad del Pa铆s Vasco y Universitat Polit猫cnica de CatalunyaNowadays, the electrical energy sector is currently found in a dramatic changing paradigm, which moves towards an increasing trend in generating power at distribution levels, where electricity is typically consumed, by means of non-conventional/renewable based generation units. These new generation technologies, termed as distributed generation, not only offers a non-pollutant, cheap and efficient source of energy to cover increasing demand, but also enhance the reliability of supply to critical loads and reduce the need for additional grid reinforcements. Aside of the technical benefits provided, distributed generation will massively integrate renewable energy resources, with new type of loads and end-user actors, such as prosumers, demand responsive loads, or electric vehicles. Where these actors will actively participate in energy and auxiliary service markets, depending on their available or constrained energy needs. For this reason, the work presented in this Thesis deals with designing and implementing advanced hierarchical control solutions to renewable-based power plants with the purpose of achieving advanced grid conection performance while reaching maximum economic benefits from its optimum real-time operation. Initially, an extensive analysis on the main renewable-based power plant hierarchical control solutions currently on the shelf, is performed. This study not only covered the specific case of renewable-based power plants, but also advanced microgrid and smart grid control solutions. Once the main renewable-based power plant hierarchical solutions were analized, a novel Hierarchical Distributed Control Structure (HDCS) is proposed for increased management of renewable-based active distributed plants. This hierarchical control structure comprises all possible functional levels from the higher long-term economic scheduling layer, to the instantaneous supervisory control of the resource, emphasizing the entire operation and control functionalities needed for increasing the integration of active distributed power plants. In order to achieve real-time control capabilities in active distribution systems, the present thesis introduces a novel power sharing control strategy, based on the competitive operation of multiple active participating agents (distributed generators, demand response and energy storage systems) through the implementation of market rules. Such control capabilities are satisfied by applying a price control signal over the entire grid control architecture, being the final-end participating agent, the responsible entity in charge of deciding its own generation/demand involvement based on its marginal or affordable electricity costs. In addition, it reduces the information volume to be transmitted and processing requirements, as the higher control levels do not need to have knowledge on the detailed distribution system topology and contributing actors. In order to have a meaningful evaluation of the proposed competitive control capabilities, a wave power plant application has been selected, which constitutes a challenging scenario for the controller itself to achieve advanced real-time control capabilities in such an oscillating renewable energy resource. In order to suitably characterize the wave energy resource profile resulting from maximum energy absorption, this Thesis introduce a novel adaptive vector controller, which maximizes the energy extraction from the resource regardless of the dominant irregular wave frequency characteristics. For the specific wave power plant application considered, the competitive control does not only ensures real-time optimum resource allocation for satisfying a given production objective, but also provides optimum long term operation of the system. As a result, overall plant costs reductions can be achieved under the competitive operation, since the plant scheduled energy is satisfied by making use of the generation units with cheaper cumulative operation costsActualmente, el sector el茅ctrico se encuentra inmerso en un profundo proceso de restructuraci贸n, donde de cada vez m谩s se tiende a generar energ铆a a nivel de distribuci贸n, mediante el uso de generaci贸n no convencional/renovable. Estas nuevas tecnolog铆as de generaci贸n, referidas como generaci贸n distribuida, no proporcionan unicamente una fuente de energ铆a no-contaminante, barata y eficiente para cubrir el incremento de demanda, sin贸 que tambi茅n pueden proporcionar seguridad de suministro a cargas cr铆ticas, as铆 como reducir la necesidad de expansiones futuras de red. Adem谩s de las capacidades t茅cnicas proporcionadas, la generaci贸n distribuida har谩 posible la integraci贸n masiva de sistemas de generaci贸n renovable, con nuevos tipos de cargas y usuarios finales, como prosumidores, cargas regulables, o vehiculos el茅ctricos, donde todos estos usuarios participaran activamente en mercados de energ铆a y servicios auxiliares, dependiendo de sus requisitos de uso de energ铆a. Por lo tanto, el trabajo realizado en esta tesis se centra en el dise帽o e implementaci贸n de soluciones jer谩rquicas de control avanzado en plantas de generaci贸n renovable, con el objetivo de obtener un comportamiento harmonioso de intercacci贸n con la red, mientras la operaci贸n de la planta maximiza los beneficios derivados de su operaci贸n en tiempo real. Inicialmente, se ha llevado a cabo una revisi贸n extensa sobre los sistemas de control jer谩rquico comunmente implementados en plantas de generaci贸n renovable, en microredes y en redes inteligentes. Una vez revisados los principales sistemas de control jer谩rquico en este tipo de aplicaciones, se propone un una novedosa estructura de control, que cubre todos los niveles de control posibles, desde el m谩s alto nivel de gesti贸n econ贸mica, hasta el control detallado del recurso de generaci贸n. Para lograr capacidades de control en tiempo real en sistemas activos de distribuci贸n, la presente tesis propone una nueva estrategia de control de reparto de potencia, basada en la operaci贸n competitiva de m煤ltiples agentes participantes activos (generadores distribuidos, respuesta de demanda y sistemas de almacenamiento de energ铆a) mediante la implementaci贸n de reglas del mercado. Dichas capacidades de control se satisfacen aplicando una se帽al de precio a lo largo de toda la arquitectura de control, siendo el agente de final, el ente responsable de decidir su propia participaci贸n en la generaci贸n/demanda en funci贸n de sus propios costes de electricidad marginales o asumibles. Adem谩s, reduce el volumen de informaci贸n a transmitir y los requisitos de procesamiento de datos, ya que los niveles de control m谩s altos no necesitan tener conocimiento sobre la topolog铆a del sistema de distribuci贸n detallado ni de la contribuci贸n de los actores adyacentes. Para llevar a cabo una evaluaci贸n significativa de las capacidades del controlador competitivo propuesto, se ha seleccionado una planta de generaci贸n undimotriz, como escenario m谩s desfavorable, ya que el controlador debe asegurar un control estable de la potencia inyectada en un escenario altamente oscilante. Con el fin de caracterizar adecuadamente el perfil de recursos de energ铆a de las olas resultante de la m谩xima absorci贸n de energ铆a, esta Tesis introduce un nuevo controlador de vector adaptativo, que maximiza la extracci贸n de energ铆a del recurso independientemente de las caracter铆sticas dominantes de frecuencia de onda irregular. Para la aplicaci贸n de la planta de energ铆a de onda espec铆fica considerada, el control competitivo no solo garantiza la asignaci贸n 贸ptima de recursos en tiempo real para satisfacer un objetivo de producci贸n dado, sino que tambi茅n proporciona una operaci贸n 贸ptima del sistema a largo plazo. Como resultado, se pueden lograr reducciones generales de los costos de la planta en el marco de la operaci贸n competitiva, ya que la energ铆a programada de la planta se satisface haciendo uso de las unidadPostprint (published version

    Competitive power control of distributed power plants

    Get PDF
    Nowadays, the electrical energy sector is currently found in a dramatic changing paradigm, which moves towards an increasing trend in generating power at distribution levels, where electricity is typically consumed, by means of non-conventional/renewable based generation units. These new generation technologies, termed as distributed generation, not only offers a non-pollutant, cheap and efficient source of energy to cover increasing demand, but also enhance the reliability of supply to critical loads and reduce the need for additional grid reinforcements. Aside of the technical benefits provided, distributed generation will massively integrate renewable energy resources, with new type of loads and end-user actors, such as prosumers, demand responsive loads, or electric vehicles. Where these actors will actively participate in energy and auxiliary service markets, depending on their available or constrained energy needs. For this reason, the work presented in this Thesis deals with designing and implementing advanced hierarchical control solutions to renewable-based power plants with the purpose of achieving advanced grid conection performance while reaching maximum economic benefits from its optimum real-time operation. Initially, an extensive analysis on the main renewable-based power plant hierarchical control solutions currently on the shelf, is performed. This study not only covered the specific case of renewable-based power plants, but also advanced microgrid and smart grid control solutions. Once the main renewable-based power plant hierarchical solutions were analized, a novel Hierarchical Distributed Control Structure (HDCS) is proposed for increased management of renewable-based active distributed plants. This hierarchical control structure comprises all possible functional levels from the higher long-term economic scheduling layer, to the instantaneous supervisory control of the resource, emphasizing the entire operation and control functionalities needed for increasing the integration of active distributed power plants. In order to achieve real-time control capabilities in active distribution systems, the present thesis introduces a novel power sharing control strategy, based on the competitive operation of multiple active participating agents (distributed generators, demand response and energy storage systems) through the implementation of market rules. Such control capabilities are satisfied by applying a price control signal over the entire grid control architecture, being the final-end participating agent, the responsible entity in charge of deciding its own generation/demand involvement based on its marginal or affordable electricity costs. In addition, it reduces the information volume to be transmitted and processing requirements, as the higher control levels do not need to have knowledge on the detailed distribution system topology and contributing actors. In order to have a meaningful evaluation of the proposed competitive control capabilities, a wave power plant application has been selected, which constitutes a challenging scenario for the controller itself to achieve advanced real-time control capabilities in such an oscillating renewable energy resource. In order to suitably characterize the wave energy resource profile resulting from maximum energy absorption, this Thesis introduce a novel adaptive vector controller, which maximizes the energy extraction from the resource regardless of the dominant irregular wave frequency characteristics. For the specific wave power plant application considered, the competitive control does not only ensures real-time optimum resource allocation for satisfying a given production objective, but also provides optimum long term operation of the system. As a result, overall plant costs reductions can be achieved under the competitive operation, since the plant scheduled energy is satisfied by making use of the generation units with cheaper cumulative operation costsActualmente, el sector el茅ctrico se encuentra inmerso en un profundo proceso de restructuraci贸n, donde de cada vez m谩s se tiende a generar energ铆a a nivel de distribuci贸n, mediante el uso de generaci贸n no convencional/renovable. Estas nuevas tecnolog铆as de generaci贸n, referidas como generaci贸n distribuida, no proporcionan unicamente una fuente de energ铆a no-contaminante, barata y eficiente para cubrir el incremento de demanda, sin贸 que tambi茅n pueden proporcionar seguridad de suministro a cargas cr铆ticas, as铆 como reducir la necesidad de expansiones futuras de red. Adem谩s de las capacidades t茅cnicas proporcionadas, la generaci贸n distribuida har谩 posible la integraci贸n masiva de sistemas de generaci贸n renovable, con nuevos tipos de cargas y usuarios finales, como prosumidores, cargas regulables, o vehiculos el茅ctricos, donde todos estos usuarios participaran activamente en mercados de energ铆a y servicios auxiliares, dependiendo de sus requisitos de uso de energ铆a. Por lo tanto, el trabajo realizado en esta tesis se centra en el dise帽o e implementaci贸n de soluciones jer谩rquicas de control avanzado en plantas de generaci贸n renovable, con el objetivo de obtener un comportamiento harmonioso de intercacci贸n con la red, mientras la operaci贸n de la planta maximiza los beneficios derivados de su operaci贸n en tiempo real. Inicialmente, se ha llevado a cabo una revisi贸n extensa sobre los sistemas de control jer谩rquico comunmente implementados en plantas de generaci贸n renovable, en microredes y en redes inteligentes. Una vez revisados los principales sistemas de control jer谩rquico en este tipo de aplicaciones, se propone un una novedosa estructura de control, que cubre todos los niveles de control posibles, desde el m谩s alto nivel de gesti贸n econ贸mica, hasta el control detallado del recurso de generaci贸n. Para lograr capacidades de control en tiempo real en sistemas activos de distribuci贸n, la presente tesis propone una nueva estrategia de control de reparto de potencia, basada en la operaci贸n competitiva de m煤ltiples agentes participantes activos (generadores distribuidos, respuesta de demanda y sistemas de almacenamiento de energ铆a) mediante la implementaci贸n de reglas del mercado. Dichas capacidades de control se satisfacen aplicando una se帽al de precio a lo largo de toda la arquitectura de control, siendo el agente de final, el ente responsable de decidir su propia participaci贸n en la generaci贸n/demanda en funci贸n de sus propios costes de electricidad marginales o asumibles. Adem谩s, reduce el volumen de informaci贸n a transmitir y los requisitos de procesamiento de datos, ya que los niveles de control m谩s altos no necesitan tener conocimiento sobre la topolog铆a del sistema de distribuci贸n detallado ni de la contribuci贸n de los actores adyacentes. Para llevar a cabo una evaluaci贸n significativa de las capacidades del controlador competitivo propuesto, se ha seleccionado una planta de generaci贸n undimotriz, como escenario m谩s desfavorable, ya que el controlador debe asegurar un control estable de la potencia inyectada en un escenario altamente oscilante. Con el fin de caracterizar adecuadamente el perfil de recursos de energ铆a de las olas resultante de la m谩xima absorci贸n de energ铆a, esta Tesis introduce un nuevo controlador de vector adaptativo, que maximiza la extracci贸n de energ铆a del recurso independientemente de las caracter铆sticas dominantes de frecuencia de onda irregular. Para la aplicaci贸n de la planta de energ铆a de onda espec铆fica considerada, el control competitivo no solo garantiza la asignaci贸n 贸ptima de recursos en tiempo real para satisfacer un objetivo de producci贸n dado, sino que tambi茅n proporciona una operaci贸n 贸ptima del sistema a largo plazo. Como resultado, se pueden lograr reducciones generales de los costos de la planta en el marco de la operaci贸n competitiva, ya que la energ铆a programada de la planta se satisface haciendo uso de las unida
    corecore