6,450 research outputs found

    Specialisation and reduction of continued fractions of formal power series

    Full text link
    We discuss and illustrate the behaviour of the continued fraction expansion of a formal power series under specialisation of parameters or their reduction modulo pp and sketch some applications of the reduction theorem here proved.Comment: 7 page

    Modular embeddings of Teichmueller curves

    Full text link
    Fuchsian groups with a modular embedding have the richest arithmetic properties among non-arithmetic Fuchsian groups. But they are very rare, all known examples being related either to triangle groups or to Teichmueller curves. In Part I of this paper we study the arithmetic properties of the modular embedding and develop from scratch a theory of twisted modular forms for Fuchsian groups with a modular embedding, proving dimension formulas, coefficient growth estimates and differential equations. In Part II we provide a modular proof for an Apery-like integrality statement for solutions of Picard-Fuchs equations. We illustrate the theory on a worked example, giving explicit Fourier expansions of twisted modular forms and the equation of a Teichmueller curve in a Hilbert modular surface. In Part III we show that genus two Teichmueller curves are cut out in Hilbert modular surfaces by a product of theta derivatives. We rederive most of the known properties of those Teichmueller curves from this viewpoint, without using the theory of flat surfaces. As a consequence we give the modular embeddings for all genus two Teichmueller curves and prove that the Fourier developments of their twisted modular forms are algebraic up to one transcendental scaling constant. Moreover, we prove that Bainbridge's compactification of Hilbert modular surfaces is toroidal. The strategy to compactify can be expressed using continued fractions and resembles Hirzebruch's in form, but every detail is different.Comment: revision including the referee's comments, to appear in Compositio Mat

    Towards an exact adaptive algorithm for the determinant of a rational matrix

    Full text link
    In this paper we propose several strategies for the exact computation of the determinant of a rational matrix. First, we use the Chinese Remaindering Theorem and the rational reconstruction to recover the rational determinant from its modular images. Then we show a preconditioning for the determinant which allows us to skip the rational reconstruction process and reconstruct an integer result. We compare those approaches with matrix preconditioning which allow us to treat integer instead of rational matrices. This allows us to introduce integer determinant algorithms to the rational determinant problem. In particular, we discuss the applicability of the adaptive determinant algorithm of [9] and compare it with the integer Chinese Remaindering scheme. We present an analysis of the complexity of the strategies and evaluate their experimental performance on numerous examples. This experience allows us to develop an adaptive strategy which would choose the best solution at the run time, depending on matrix properties. All strategies have been implemented in LinBox linear algebra library

    On the Cyclotomic Quantum Algebra of Time Perception

    Full text link
    I develop the idea that time perception is the quantum counterpart to time measurement. Phase-locking and prime number theory were proposed as the unifying concepts for understanding the optimal synchronization of clocks and their 1/f frequency noise. Time perception is shown to depend on the thermodynamics of a quantum algebra of number and phase operators already proposed for quantum computational tasks, and to evolve according to a Hamiltonian mimicking Fechner's law. The mathematics is Bost and Connes quantum model for prime numbers. The picture that emerges is a unique perception state above a critical temperature and plenty of them allowed below, which are parametrized by the symmetry group for the primitive roots of unity. Squeezing of phase fluctuations close to the phase transition temperature may play a role in memory encoding and conscious activity

    Euclidean algorithms are Gaussian

    Get PDF
    This study provides new results about the probabilistic behaviour of a class of Euclidean algorithms: the asymptotic distribution of a whole class of cost-parameters associated to these algorithms is normal. For the cost corresponding to the number of steps Hensley already has proved a Local Limit Theorem; we give a new proof, and extend his result to other euclidean algorithms and to a large class of digit costs, obtaining a faster, optimal, rate of convergence. The paper is based on the dynamical systems methodology, and the main tool is the transfer operator. In particular, we use recent results of Dolgopyat.Comment: fourth revised version - 2 figures - the strict convexity condition used has been clarifie
    • …
    corecore