4,555 research outputs found

    Notes on Cloud computing principles

    Get PDF
    This letter provides a review of fundamental distributed systems and economic Cloud computing principles. These principles are frequently deployed in their respective fields, but their inter-dependencies are often neglected. Given that Cloud Computing first and foremost is a new business model, a new model to sell computational resources, the understanding of these concepts is facilitated by treating them in unison. Here, we review some of the most important concepts and how they relate to each other

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Optimal Posted Prices for Online Cloud Resource Allocation

    Full text link
    We study online resource allocation in a cloud computing platform, through a posted pricing mechanism: The cloud provider publishes a unit price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either takes the current prices, renting resources to execute its job, or refuses the prices without running its job there. We design pricing functions based on the current resource utilization ratios, in a wide array of demand-supply relationships and resource occupation durations, and prove worst-case competitive ratios of the pricing functions in terms of social welfare. In the basic case of a single-type, non-recycled resource (i.e., allocated resources are not later released for reuse), we prove that our pricing function design is optimal, in that any other pricing function can only lead to a worse competitive ratio. Insights obtained from the basic cases are then used to generalize the pricing functions to more realistic cloud systems with multiple types of resources, where a job occupies allocated resources for a number of time slots till completion, upon which time the resources are returned back to the cloud resource pool

    Rational bidding using reinforcement learning: an application in automated resource allocation

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized
    • …
    corecore