12 research outputs found

    Low Time Complexity Algorithms for Path Computation in Cayley Graphs

    Get PDF
    International audienceWe study the problem of path computation in Cayley Graphs (CG) from an approach of word processing in groups. This approach consists in encoding the topological structure of CG in an automaton called Diff , then techniques of word processing are applied for computing the shortest paths. We present algorithms for computing the K-shortest paths, the shortest disjoint paths and the shortest path avoiding a set of nodes and edges. For any CG with diameter D, the time complexity of the proposed algorithms is O(KD|Diff |), where |Diff | denotes the size of Diff. We show that our proposal outperforms the state of art of topology-agnostic algorithms for disjoint shortest paths and stays competitive with respect to proposals for specific families of CG. Therefore, the proposed algorithms set a base in the design of adaptive and low-complexity routing schemes for networks whose interconnections are defined by CG

    Subject index volumes 1–92

    Get PDF

    Traversing combinatorial 0/1-polytopes via optimization

    Get PDF
    In this paper, we present a new framework that exploits combinatorial optimization for efficiently generating a large variety of combinatorial objects based on graphs, matroids, posets and polytopes. Our method relies on a simple and versatile algorithm for computing a Hamilton path on the skeleton of any 0/1-polytope \conv(X), where X\seq \{0,1\}^n. The algorithm uses as a black box any algorithm that solves a variant of the classical linear optimization problem~min{wxxX}\min\{w\cdot x\mid x\in X\}, and the resulting delay, i.e., the running time per visited vertex on the Hamilton path, is only by a factor of logn\log n larger than the running time of the optimization algorithm. When XX encodes a particular class of combinatorial objects, then traversing the skeleton of the polytope~\conv(X) along a Hamilton path corresponds to listing the combinatorial objects by local change operations, i.e., we obtain Gray code listings. As concrete results of our general framework, we obtain efficient algorithms for generating all (cc-optimal) bases and independent sets in a matroid; (cc-optimal) spanning trees, forests, matchings, maximum matchings, and cc-optimal matchings in a general graph; vertex covers, minimum vertex covers, cc-optimal vertex covers, stable sets, maximum stable sets and cc-optimal stable sets in a bipartite graph; as well as antichains, maximum antichains, cc-optimal antichains, and cc-optimal ideals of a poset. Specifically, the delay and space required by these algorithms are polynomial in the size of the matroid ground set, graph, or poset, respectively. Furthermore, all of these listings correspond to Hamilton paths on the corresponding combinatorial polytopes, namely the base polytope, matching polytope, vertex cover polytope, stable set polytope, chain polytope and order polytope, respectively. As another corollary from our framework, we obtain an \cO(t_{\upright{LP}} \log n) delay algorithm for the vertex enumeration problem on 0/1-polytopes {xRnAxb}\{x\in\mathbb{R}^n\mid Ax\leq b\}, where ARm×nA\in \mathbb{R}^{m\times n} and~bRmb\in\mathbb{R}^m, and t_{\upright{LP}} is the time needed to solve the linear program min{wxAxb}\min\{w\cdot x\mid Ax\leq b\}. This improves upon the 25-year old \cO(t_{\upright{LP}}\,n) delay algorithm due to Bussieck and L\"ubbecke

    Fifth Conference on Artificial Intelligence for Space Applications

    Get PDF
    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Head-Driven Phrase Structure Grammar

    Get PDF
    Head-Driven Phrase Structure Grammar (HPSG) is a constraint-based or declarative approach to linguistic knowledge, which analyses all descriptive levels (phonology, morphology, syntax, semantics, pragmatics) with feature value pairs, structure sharing, and relational constraints. In syntax it assumes that expressions have a single relatively simple constituent structure. This volume provides a state-of-the-art introduction to the framework. Various chapters discuss basic assumptions and formal foundations, describe the evolution of the framework, and go into the details of the main syntactic phenomena. Further chapters are devoted to non-syntactic levels of description. The book also considers related fields and research areas (gesture, sign languages, computational linguistics) and includes chapters comparing HPSG with other frameworks (Lexical Functional Grammar, Categorial Grammar, Construction Grammar, Dependency Grammar, and Minimalism)

    Head-Driven Phrase Structure Grammar

    Get PDF
    Head-Driven Phrase Structure Grammar (HPSG) is a constraint-based or declarative approach to linguistic knowledge, which analyses all descriptive levels (phonology, morphology, syntax, semantics, pragmatics) with feature value pairs, structure sharing, and relational constraints. In syntax it assumes that expressions have a single relatively simple constituent structure. This volume provides a state-of-the-art introduction to the framework. Various chapters discuss basic assumptions and formal foundations, describe the evolution of the framework, and go into the details of the main syntactic phenomena. Further chapters are devoted to non-syntactic levels of description. The book also considers related fields and research areas (gesture, sign languages, computational linguistics) and includes chapters comparing HPSG with other frameworks (Lexical Functional Grammar, Categorial Grammar, Construction Grammar, Dependency Grammar, and Minimalism)

    Teacher roles during amusement park visits – insights from observations, interviews and questionnaires

    Get PDF
    Amusement parks offer rich possibilities for physics learning, through observations and experiments that illustrate important physical principles and often involve the whole body. Amusement parks are also among the most popular school excursions, but very often the learning possibilities are underused. In this work we have studied different teacher roles and discuss how universities, parks or event managers can encourage and support teachers and schools in their efforts to make amusement park visits true learning experiences for their students
    corecore