4,644 research outputs found

    Design of Quantum Circuits for Galois Field Squaring and Exponentiation

    Full text link
    This work presents an algorithm to generate depth, quantum gate and qubit optimized circuits for GF(2m)GF(2^m) squaring in the polynomial basis. Further, to the best of our knowledge the proposed quantum squaring circuit algorithm is the only work that considers depth as a metric to be optimized. We compared circuits generated by our proposed algorithm against the state of the art and determine that they require 50%50 \% fewer qubits and offer gates savings that range from 37%37 \% to 68%68 \%. Further, existing quantum exponentiation are based on either modular or integer arithmetic. However, Galois arithmetic is a useful tool to design resource efficient quantum exponentiation circuit applicable in quantum cryptanalysis. Therefore, we present the quantum circuit implementation of Galois field exponentiation based on the proposed quantum Galois field squaring circuit. We calculated a qubit savings ranging between 44%44\% to 50%50\% and quantum gate savings ranging between 37%37 \% to 68%68 \% compared to identical quantum exponentiation circuit based on existing squaring circuits.Comment: To appear in conference proceedings of the 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2017

    Remarks on Quantum Modular Exponentiation and Some Experimental Demonstrations of Shor's Algorithm

    Get PDF
    An efficient quantum modular exponentiation method is indispensible for Shor's factoring algorithm. But we find that all descriptions presented by Shor, Nielsen and Chuang, Markov and Saeedi, et al., are flawed. We also remark that some experimental demonstrations of Shor's algorithm are misleading, because they violate the necessary condition that the selected number q=2sq=2^s, where ss is the number of qubits used in the first register, must satisfy n2≤q<2n2n^2 \leq q < 2n^2, where nn is the large number to be factored.Comment: 12 pages,5 figures. The original version has 6 pages. It did not point out the reason that some researchers took for granted that quantum modlar exponentiation is in polynomial time. In the new version, we indicate the reason and analyze some experimental demonstrations of Shor's algorithm. Besides, the author Zhenfu Cao is added to the version for his contribution. arXiv admin note: text overlap with arXiv:1409.735

    Fast Quantum Modular Exponentiation

    Full text link
    We present a detailed analysis of the impact on modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space tradeoffs. We find that, to exponentiate an n-bit number, for storage space 100n (twenty times the minimum 5n), we can execute modular exponentiation two hundred to seven hundred times faster than optimized versions of the basic algorithms, depending on architecture, for n=128. Addition on a neighbor-only architecture is limited to O(n) time when non-neighbor architectures can reach O(log n), demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices.Comment: to appear in PRA 71(5); RevTeX, 12 pages, 12 figures; v2 revision is substantial, with new algorithmic variants, much shorter and clearer text, and revised equation formattin
    • …
    corecore