1,088 research outputs found

    Data mining based cyber-attack detection

    Get PDF

    DASS Good: Explainable Data Mining of Spatial Cohort Data

    Full text link
    Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.Comment: 10 pages, 9 figure

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Artificial Intelligence in Energy Demand Response: A Taxonomy of Input Data Requirements

    Get PDF
    The ongoing energy transition increases the share of renewable energy sources. To combat inherent intermittency of RES, increasing system flexibility forms a major opportunity. One way to provide flexibility is demand response (DR). Research already reflects several approaches of artificial intelligence (AI) for DR. However, these approaches often lack considerations concerning their applicability, i.e., necessary input data. To help putting these algorithms into practice, the objective of this paper is to analyze, how input data requirements of AI approaches in the field of DR can be systematized from a practice-oriented information systems perspective. Therefore, we develop a taxonomy consisting of eight dimensions encompassing 30 characteristics. Our taxonomy contributes to research by illustrating how future AI approaches in the field of DR should represent their input data requirements. For practitioners, our developed taxonomy adds value as a structuring tool, e.g., to verify applicability with respect to input data requirements

    Artificial Intelligence Applied to Conceptual Design. A Review of Its Use in Architecture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Conceptual architectural design is a complex process that draws on past experience and creativity to generate new designs. The application of artificial intelligence to this process should not be oriented toward finding a solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions to meet those requirements. This work offers a tour of major research projects that apply artificial intelligence solutions to architectural conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial approaches were oriented toward finding innovative and creative forms, while the latest research focuses on optimizing architectural form.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), and the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/1

    Parameter optimization of evolving spiking neural network with dynamic population particle swarm optimization

    Get PDF
    Evolving Spiking Neural Network (ESNN) is widely used in classification problem. However, ESNN like any other neural networks is incapable to find its own parameter optimum values, which are crucial for classification accuracy. Thus, in this study, ESNN is integrated with an improved Particle Swarm Optimization (PSO) known as Dynamic Population Particle Swarm Optimization (DPPSO) to optimize the ESNN parameters: the modulation factor (Mod), similarity factor (Sim) and threshold factor (C). To find the optimum ESNN parameter value, DPPSO uses a dynamic population that removes the lowest particle value in every pre-defined iteration. The integration of ESNN-DPPSO facilitates the ESNN parameter optimization searching during the training stage. The performance analysis is measured by classification accuracy and is compared with the existing method. Five datasets gained from University of California Irvine (UCI) Machine Learning Repository are used for this study. The experimental result presents better accuracy compared to the existing technique and thus improves the ESNN method in optimising its parameter values
    corecore