12,366 research outputs found

    Neural Network-Based Equations for Predicting PGA and PGV in Texas, Oklahoma, and Kansas

    Full text link
    Parts of Texas, Oklahoma, and Kansas have experienced increased rates of seismicity in recent years, providing new datasets of earthquake recordings to develop ground motion prediction models for this particular region of the Central and Eastern North America (CENA). This paper outlines a framework for using Artificial Neural Networks (ANNs) to develop attenuation models from the ground motion recordings in this region. While attenuation models exist for the CENA, concerns over the increased rate of seismicity in this region necessitate investigation of ground motions prediction models particular to these states. To do so, an ANN-based framework is proposed to predict peak ground acceleration (PGA) and peak ground velocity (PGV) given magnitude, earthquake source-to-site distance, and shear wave velocity. In this framework, approximately 4,500 ground motions with magnitude greater than 3.0 recorded in these three states (Texas, Oklahoma, and Kansas) since 2005 are considered. Results from this study suggest that existing ground motion prediction models developed for CENA do not accurately predict the ground motion intensity measures for earthquakes in this region, especially for those with low source-to-site distances or on very soft soil conditions. The proposed ANN models provide much more accurate prediction of the ground motion intensity measures at all distances and magnitudes. The proposed ANN models are also converted to relatively simple mathematical equations so that engineers can easily use them to predict the ground motion intensity measures for future events. Finally, through a sensitivity analysis, the contributions of the predictive parameters to the prediction of the considered intensity measures are investigated.Comment: 5th Geotechnical Earthquake Engineering and Soil Dynamics Conference, Austin, TX, USA, June 10-13. (2018

    Wide Field Imaging. I. Applications of Neural Networks to object detection and star/galaxy classification

    Get PDF
    [Abriged] Astronomical Wide Field Imaging performed with new large format CCD detectors poses data reduction problems of unprecedented scale which are difficult to deal with traditional interactive tools. We present here NExt (Neural Extractor): a new Neural Network (NN) based package capable to detect objects and to perform both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first discriminated from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold and then they are classified as stars or as galaxies through diagnostic diagrams having variables choosen accordingly to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of "what an object is" (id est, it keeps all structures composed by more than one pixels) and performs the detection via an unsupervised NN approaching detection as a clustering problem which has been thoroughly studied in the artificial intelligence literature. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features, we use a NN to select the most significant features among the large number of measured ones, and then we use their selected features to perform the classification task. In order to optimise the performances of the system we implemented and tested several different models of NN. The comparison of the NExt performances with those of the best detection and classification package known to the authors (SExtractor) shows that NExt is at least as effective as the best traditional packages.Comment: MNRAS, in press. Paper with higher resolution images is available at http://www.na.astro.it/~andreon/listapub.htm
    corecore