1,794 research outputs found

    Joint Power Control and Fronthaul Rate Allocation for Throughput Maximization in OFDMA-based Cloud Radio Access Network

    Full text link
    The performance of cloud radio access network (C-RAN) is constrained by the limited fronthaul link capacity under future heavy data traffic. To tackle this problem, extensive efforts have been devoted to design efficient signal quantization/compression techniques in the fronthaul to maximize the network throughput. However, most of the previous results are based on information-theoretical quantization methods, which are hard to implement due to the extremely high complexity. In this paper, we consider using practical uniform scalar quantization in the uplink communication of an orthogonal frequency division multiple access (OFDMA) based C-RAN system, where the mobile users are assigned with orthogonal sub-carriers for multiple access. In particular, we consider joint wireless power control and fronthaul quantization design over the sub-carriers to maximize the system end-to-end throughput. Efficient algorithms are proposed to solve the joint optimization problem when either information-theoretical or practical fronthaul quantization method is applied. Interestingly, we find that the fronthaul capacity constraints have significant impact to the optimal wireless power control policy. As a result, the joint optimization shows significant performance gain compared with either optimizing wireless power control or fronthaul quantization alone. Besides, we also show that the proposed simple uniform quantization scheme performs very close to the throughput performance upper bound, and in fact overlaps with the upper bound when the fronthaul capacity is sufficiently large. Overall, our results would help reveal practically achievable throughput performance of C-RAN, and lead to more efficient deployment of C-RAN in the next-generation wireless communication systems.Comment: submitted for possible publicatio

    Revisiting Multi-Step Nonlinearity Compensation with Machine Learning

    Get PDF
    For the efficient compensation of fiber nonlinearity, one of the guiding principles appears to be: fewer steps are better and more efficient. We challenge this assumption and show that carefully designed multi-step approaches can lead to better performance-complexity trade-offs than their few-step counterparts.Comment: 4 pages, 3 figures, This is a preprint of a paper submitted to the 2019 European Conference on Optical Communicatio

    Efficient end-to-end learning for quantizable representations

    Full text link
    Embedding representation learning via neural networks is at the core foundation of modern similarity based search. While much effort has been put in developing algorithms for learning binary hamming code representations for search efficiency, this still requires a linear scan of the entire dataset per each query and trades off the search accuracy through binarization. To this end, we consider the problem of directly learning a quantizable embedding representation and the sparse binary hash code end-to-end which can be used to construct an efficient hash table not only providing significant search reduction in the number of data but also achieving the state of the art search accuracy outperforming previous state of the art deep metric learning methods. We also show that finding the optimal sparse binary hash code in a mini-batch can be computed exactly in polynomial time by solving a minimum cost flow problem. Our results on Cifar-100 and on ImageNet datasets show the state of the art search accuracy in precision@k and NMI metrics while providing up to 98X and 478X search speedup respectively over exhaustive linear search. The source code is available at https://github.com/maestrojeong/Deep-Hash-Table-ICML18Comment: Accepted and to appear at ICML 2018. Camera ready versio
    • 

    corecore