87 research outputs found

    Materialized View Selection in XML Databases

    Get PDF
    Materialized views, a rdbms silver bullet, demonstrate its efficacy in many applications, especially as a data warehousing/decison support system tool. The pivot of playing materialized views efficiently is view selection. Though studied for over thirty years in rdbms, the selection is hard to make in the context of xml databases, where both the semi-structured data and the expressiveness of xml query languages add challenges to the view selection problem. We start our discussion on producing minimal xml views (in terms of size) as candidates for a given workload (a query set). To facilitate intuitionistic view selection, we present a view graph (called vcube) to structurally maintain all generated views. By basing our selection on vcube for materialization, we propose two view selection strategies, targeting at space-optimized and space-time tradeoff, respectively. We built our implementation on top of Berkeley DB XML, demonstrating that significant performance improvement could be obtained using our proposed approaches

    Compressed materialised views of semi-structured data

    Get PDF
    Query performance issues over semi-structured data have led to the emergence of materialised XML views as a means of restricting the data structure processed by a query. However preserving the conventional representation of such views remains a significant limiting factor especially in the context of mobile devices where processing power, memory usage and bandwidth are significant factors. To explore the concept of a compressed materialised view, we extend our earlier work on structural XML compression to produce a combination of structural summarisation and data compression techniques. These techniques provide a basis for efficiently dealing with both structural queries and valuebased predicates. We evaluate the effectiveness of such a scheme, presenting results and performance measures that show advantages of using such structures

    Hybrid approach for XML access control (HyXAC)

    Get PDF
    While XML has been widely adopted for sharing and managing information over the Internet, the need for efficient XML access control naturally arise. Various access control models and mechanisms have been proposed in the research community, such as view-based approaches and preprocessing approaches. All categories of solutions have their inherent advantages and disadvantages. For instance, view based approach provides high performance in query evaluation, but suffers from the view maintenance issues. To remedy the problems, we propose a hybrid approach, namely HyXAC: Hybrid XML Access Control. HyXAC provides efficient access control and query processing by maximizing the utilization of available (but constrained) resources. HyXAC uses pre-processing approach as a baseline to process queries and define sub-views. It dynamically allocates the available resources (memory and secondary storage) to materialize sub-views to improve query performance. Dynamic and fine-grained view management is introduced to utilize cost-effectiveness analysis for optimal query performance. Fine-grained view management also allows sub-views to be shared across multiple roles to eliminate the redundancies in storage

    Repetitive querying of large random heterogeneous datasets in RDBMS using materialized views

    Get PDF
    A methodology has been developed to increase time efficiency of querying large heterogeneous datasets repetitively by applying materialized views on repetitive complex queries. Additionally, a simple user interface is provided to demonstrate the utility of this research methodology. The programs demonstrate sufficiently that the core design can be used to deploy a complete system which could be used in different domains. The methodology as developed in this research is presented as an experimental proof-of-concept prototype based on an abstract design

    Updating Recursive XML Views of Relations

    Get PDF
    This paper investigates the view update problem for XML views published from relational data. We consider XML views defined in terms of mappings directed by possibly recursive DTDs, compressed into DAGs and stored in relations. We provide new techniques to efficiently support XML view updates specified in terms of XPath expressions with recursion and complex filters. The interaction between XPath recursion and DAG compression of XML views makes the analysis of XML view updates rather intriguing. In addition, many issues are still open even for relational view updates, and need to be explored. In response to these, on the XML side, we revise the notion of side effects and update semantics based on the semantics of XML views, and present efficient algorithms to translate XML updates to relational view updates. On the relational side, we propose a mild condition on SPJ views, and show that under this condition the analysis of deletions on relational views becomes PTIME while the insertion analysis is NP-complete. We develop an efficient algorithm to process relational view deletions, and a heuristic algorithm to handle view insertions. Finally, we present an experimental study to verify the effectiveness of our techniques. 1
    • …
    corecore