1,649 research outputs found

    WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Get PDF
    Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an "open" philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions

    Resource Allocation in Ad Hoc Networks

    No full text
    Unlike the centralized network, the ad hoc network does not have any central administrations and energy is constrained, e.g. battery, so the resource allocation plays a very important role in efficiently managing the limited energy in ad hoc networks. This thesis focuses on the resource allocation in ad hoc networks and aims to develop novel techniques that will improve the network performance from different network layers, such as the physical layer, Medium Access Control (MAC) layer and network layer. This thesis examines the energy utilization in High Speed Downlink Packet Access (HSDPA) systems at the physical layer. Two resource allocation techniques, known as channel adaptive HSDPA and two-group HSDPA, are developed to improve the performance of an ad hoc radio system through reducing the residual energy, which in turn, should improve the data rate in HSDPA systems. The channel adaptive HSDPA removes the constraint on the number of channels used for transmissions. The two-group allocation minimizes the residual energy in HSDPA systems and therefore enhances the physical data rates in transmissions due to adaptive modulations. These proposed approaches provide better data rate than rates achieved with the current HSDPA type of algorithm. By considering both physical transmission power and data rates for defining the cost function of the routing scheme, an energy-aware routing scheme is proposed in order to find the routing path with the least energy consumption. By focusing on the routing paths with low energy consumption, computational complexity is significantly reduced. The data rate enhancement achieved by two-group resource allocation further reduces the required amount of energy per bit for each path. With a novel load balancing technique, the information bits can be allocated to each path in such that a way the overall amount of energy consumed is minimized. After loading bits to multiple routing paths, an end-to-end delay minimization solution along a routing path is developed through studying MAC distributed coordination function (DCF) service time. Furthermore, the overhead effect and the related throughput reduction are studied. In order to enhance the network throughput at the MAC layer, two MAC DCF-based adaptive payload allocation approaches are developed through introducing Lagrange optimization and studying equal data transmission period

    Energy-delay region of low duty cycle wireless sensor networks for critical data collection

    Get PDF
    Session: Sensor networksThe Conference program's website is located at http://ita.ucsd.edu/workshop/14/talksWe investigate the trade-off between energy consumption and delay for critical data collection in low duty cycle wireless sensor networks, where a causality constraint exists for routing and link scheduling. We characterize the energy-delay region (E-D region) and formulate a combinatorial optimization problem to determine the link scheduling with the causality constraint. A new multiple-degree ordered (MDO) coloring method is proposed to solve this problem with near-optimal delay performance. The impacts of many system parameters on the ED region are evaluated by extensive simulation, providing an insightful frame of reference for design of critical data collection wireless sensor networks.postprin
    • …
    corecore