1,289 research outputs found

    A conceptual framework and a risk management approach for interoperability between geospatial datacubes

    Get PDF
    De nos jours, nous observons un intĂ©rĂȘt grandissant pour les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es sont dĂ©veloppĂ©es pour faciliter la prise de dĂ©cisions stratĂ©giques des organisations, et plus spĂ©cifiquement lorsqu’il s’agit de donnĂ©es de diffĂ©rentes Ă©poques et de diffĂ©rents niveaux de granularitĂ©. Cependant, les utilisateurs peuvent avoir besoin d’utiliser plusieurs bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es peuvent ĂȘtre sĂ©mantiquement hĂ©tĂ©rogĂšnes et caractĂ©risĂ©es par diffĂ©rent degrĂ©s de pertinence par rapport au contexte d’utilisation. RĂ©soudre les problĂšmes sĂ©mantiques liĂ©s Ă  l’hĂ©tĂ©rogĂ©nĂ©itĂ© et Ă  la diffĂ©rence de pertinence d’une maniĂšre transparente aux utilisateurs a Ă©tĂ© l’objectif principal de l’interopĂ©rabilitĂ© au cours des quinze derniĂšres annĂ©es. Dans ce contexte, diffĂ©rentes solutions ont Ă©tĂ© proposĂ©es pour traiter l’interopĂ©rabilitĂ©. Cependant, ces solutions ont adoptĂ© une approche non systĂ©matique. De plus, aucune solution pour rĂ©soudre des problĂšmes sĂ©mantiques spĂ©cifiques liĂ©s Ă  l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles n’a Ă©tĂ© trouvĂ©e. Dans cette thĂšse, nous supposons qu’il est possible de dĂ©finir une approche qui traite ces problĂšmes sĂ©mantiques pour assurer l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ainsi, nous dĂ©finissons tout d’abord l’interopĂ©rabilitĂ© entre ces bases de donnĂ©es. Ensuite, nous dĂ©finissons et classifions les problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique qui peuvent se produire au cours d’une telle interopĂ©rabilitĂ© de diffĂ©rentes bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Afin de rĂ©soudre ces problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique, nous proposons un cadre conceptuel qui se base sur la communication humaine. Dans ce cadre, une communication s’établit entre deux agents systĂšme reprĂ©sentant les bases de donnĂ©es gĂ©ospatiales multidimensionnelles impliquĂ©es dans un processus d’interopĂ©rabilitĂ©. Cette communication vise Ă  Ă©changer de l’information sur le contenu de ces bases. Ensuite, dans l’intention d’aider les agents Ă  prendre des dĂ©cisions appropriĂ©es au cours du processus d’interopĂ©rabilitĂ©, nous Ă©valuons un ensemble d’indicateurs de la qualitĂ© externe (fitness-for-use) des schĂ©mas et du contexte de production (ex., les mĂ©tadonnĂ©es). Finalement, nous mettons en Ɠuvre l’approche afin de montrer sa faisabilitĂ©.Today, we observe wide use of geospatial databases that are implemented in many forms (e.g., transactional centralized systems, distributed databases, multidimensional datacubes). Among those possibilities, the multidimensional datacube is more appropriate to support interactive analysis and to guide the organization’s strategic decisions, especially when different epochs and levels of information granularity are involved. However, one may need to use several geospatial multidimensional datacubes which may be semantically heterogeneous and having different degrees of appropriateness to the context of use. Overcoming the semantic problems related to the semantic heterogeneity and to the difference in the appropriateness to the context of use in a manner that is transparent to users has been the principal aim of interoperability for the last fifteen years. However, in spite of successful initiatives, today's solutions have evolved in a non systematic way. Moreover, no solution has been found to address specific semantic problems related to interoperability between geospatial datacubes. In this thesis, we suppose that it is possible to define an approach that addresses these semantic problems to support interoperability between geospatial datacubes. For that, we first describe interoperability between geospatial datacubes. Then, we define and categorize the semantic heterogeneity problems that may occur during the interoperability process of different geospatial datacubes. In order to resolve semantic heterogeneity between geospatial datacubes, we propose a conceptual framework that is essentially based on human communication. In this framework, software agents representing geospatial datacubes involved in the interoperability process communicate together. Such communication aims at exchanging information about the content of geospatial datacubes. Then, in order to help agents to make appropriate decisions during the interoperability process, we evaluate a set of indicators of the external quality (fitness-for-use) of geospatial datacube schemas and of production context (e.g., metadata). Finally, we implement the proposed approach to show its feasibility

    Developing a model and a language to identify and specify the integrity constraints in spatial datacubes

    Get PDF
    La qualité des données dans les cubes de données spatiales est importante étant donné que ces données sont utilisées comme base pour la prise de décision dans les grandes organisations. En effet, une mauvaise qualité de données dans ces cubes pourrait nous conduire à une mauvaise prise de décision. Les contraintes d'intégrité jouent un rÎle clé pour améliorer la cohérence logique de toute base de données, l'un des principaux éléments de la qualité des données. Différents modÚles de cubes de données spatiales ont été proposés ces derniÚres années mais aucun n'inclut explicitement les contraintes d'intégrité. En conséquence, les contraintes d'intégrité de cubes de données spatiales sont traitées de façon non-systématique, pragmatique, ce qui rend inefficace le processus de vérification de la cohérence des données dans les cubes de données spatiales. Cette thÚse fournit un cadre théorique pour identifier les contraintes d'intégrité dans les cubes de données spatiales ainsi qu'un langage formel pour les spécifier. Pour ce faire, nous avons d'abord proposé un modÚle formel pour les cubes de données spatiales qui en décrit les différentes composantes. En nous basant sur ce modÚle, nous avons ensuite identifié et catégorisé les différents types de contraintes d'intégrité dans les cubes de données spatiales. En outre, puisque les cubes de données spatiales contiennent typiquement à la fois des données spatiales et temporelles, nous avons proposé une classification des contraintes d'intégrité des bases de données traitant de l'espace et du temps. Ensuite, nous avons présenté un langage formel pour spécifier les contraintes d'intégrité des cubes de données spatiales. Ce langage est basé sur un langage naturel contrÎlé et hybride avec des pictogrammes. Plusieurs exemples de contraintes d'intégrité des cubes de données spatiales sont définis en utilisant ce langage. Les designers de cubes de données spatiales (analystes) peuvent utiliser le cadre proposé pour identifier les contraintes d'intégrité et les spécifier au stade de la conception des cubes de données spatiales. D'autre part, le langage formel proposé pour spécifier des contraintes d'intégrité est proche de la façon dont les utilisateurs finaux expriment leurs contraintes d'intégrité. Par conséquent, en utilisant ce langage, les utilisateurs finaux peuvent vérifier et valider les contraintes d'intégrité définies par l'analyste au stade de la conception

    Exploiting prior knowledge and latent variable representations for the statistical modeling and probabilistic querying of large knowledge graphs

    Get PDF
    Large knowledge graphs increasingly add great value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. These applications include Google search, Bing search, IBM’s Watson, but also smart mobile assistants as Apple’s Siri, Google Now or Microsoft’s Cortana. Popular knowledge graphs like DBpedia, YAGO or Freebase store a broad range of facts about the world, to a large extent derived from Wikipedia, currently the biggest web encyclopedia. In addition to these freely accessible open knowledge graphs, commercial ones have also evolved including the well-known Google Knowledge Graph or Microsoft’s Satori. Since incompleteness and veracity of knowledge graphs are known problems, the statistical modeling of knowledge graphs has increasingly gained attention in recent years. Some of the leading approaches are based on latent variable models which show both excellent predictive performance and scalability. Latent variable models learn embedding representations of domain entities and relations (representation learning). From these embeddings, priors for every possible fact in the knowledge graph are generated which can be exploited for data cleansing, completion or as prior knowledge to support triple extraction from unstructured textual data as successfully demonstrated by Google’s Knowledge-Vault project. However, large knowledge graphs impose constraints on the complexity of the latent embeddings learned by these models. For graphs with millions of entities and thousands of relation-types, latent variable models are required to exploit low dimensional embeddings for entities and relation-types to be tractable when applied to these graphs. The work described in this thesis extends the application of latent variable models for large knowledge graphs in three important dimensions. First, it is shown how the integration of ontological constraints on the domain and range of relation-types enables latent variable models to exploit latent embeddings of reduced complexity for modeling large knowledge graphs. The integration of this prior knowledge into the models leads to a substantial increase both in predictive performance and scalability with improvements of up to 77% in link-prediction tasks. Since manually designed domain and range constraints can be absent or fuzzy, we also propose and study an alternative approach based on a local closed-world assumption, which derives domain and range constraints from observed data without the need of prior knowledge extracted from the curated schema of the knowledge graph. We show that such an approach also leads to similar significant improvements in modeling quality. Further, we demonstrate that these two types of domain and range constraints are of general value to latent variable models by integrating and evaluating them on the current state of the art of latent variable models represented by RESCAL, Translational Embedding, and the neural network approach used by the recently proposed Google Knowledge Vault system. In the second part of the thesis it is shown that the just mentioned three approaches all perform well, but do not share many commonalities in the way they model knowledge graphs. These differences can be exploited in ensemble solutions which improve the predictive performance even further. The third part of the thesis concerns the efficient querying of the statistically modeled knowledge graphs. This thesis interprets statistically modeled knowledge graphs as probabilistic databases, where the latent variable models define a probability distribution for triples. From this perspective, link-prediction is equivalent to querying ground triples which is a standard functionality of the latent variable models. For more complex querying that involves e.g. joins and projections, the theory on probabilistic databases provides evaluation rules. In this thesis it is shown how the intrinsic features of latent variable models can be combined with the theory of probabilistic databases to realize efficient probabilistic querying of the modeled graphs

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Smart Environmental Data Infrastructures: Bridging the Gap between Earth Sciences and Citizens

    Get PDF
    The monitoring and forecasting of environmental conditions is a task to which much effort and resources are devoted by the scientific community and relevant authorities. Representative examples arise in meteorology, oceanography, and environmental engineering. As a consequence, high volumes of data are generated, which include data generated by earth observation systems and different kinds of models. Specific data models, formats, vocabularies and data access infrastructures have been developed and are currently being used by the scientific community. Due to this, discovering, accessing and analyzing environmental datasets requires very specific skills, which is an important barrier for their reuse in many other application domains. This paper reviews earth science data representation and access standards and technologies, and identifies the main challenges to overcome in order to enable their integration in semantic open data infrastructures. This would allow non-scientific information technology practitioners to devise new end-user solutions for citizen problems in new application domainsThis research was co-funded by (i) the TRAFAIR project (2017-EU-IA-0167), co-financed by the Connecting Europe Facility of the European Union, (ii) the RADAR-ON-RAIA project (0461_RADAR_ON_RAIA_1_E) co-financed by the European Regional Development Fund (ERDF) through the Iterreg V-A Spain-Portugal program (POCTEP) 2014-2020, and (iii) the ConsellerĂ­a de EducaciĂłn, Universidade e FormaciĂłn Profesional of the regional government of Galicia (Spain), through the support for research groups with growth potential (ED431B 2018/28)S

    Co-Transformation of Type and Instance Graphs Supporting Merging of Types and Retyping

    Get PDF
    Algebraic graph transformation is a well-known rule-based approach to manipulate graphs that can be applied in several contexts. In this paper we use it in the context of model-driven engineering. Graph transformation rules usually specify changes to only one graph per application, however there are use cases such as model co-evolution where not only a single graph should be manipulated but also related ones. The co-transformation of type graphs together with their instance graphs has shown to be a promising approach to formalize model and meta-model co-evolution. In this paper, we extend our earlier work on co-evolution by allowing transformation rules that have less restrictions so that graph manipulations such as merging of types and retyping of graph elements are allowed

    Analytical Photography as a New Tool for the Representations of Reality

    Get PDF
    AbstractIn this article, the authors examine the history and the fundamental problems of photography as an edge between art and technology. Photography is emphasized as a mean to an objective representation of reality, and according to that it is differentiated on the basis of its functions and a vector of development in socially important context is offered. The authors introduce the notion of analytical photography as a mean of analytical research such fields as anthropology, sociology, journalism, urban design, as well as in those areas where the solution of a research task is based on visual information
    • 

    corecore