6,208 research outputs found

    Low Diameter Graph Decompositions by Approximate Distance Computation

    Get PDF
    In many models for large-scale computation, decomposition of the problem is key to efficient algorithms. For distance-related graph problems, it is often crucial that such a decomposition results in clusters of small diameter, while the probability that an edge is cut by the decomposition scales linearly with the length of the edge. There is a large body of literature on low diameter graph decomposition with small edge cutting probabilities, with all existing techniques heavily building on single source shortest paths (SSSP) computations. Unfortunately, in many theoretical models for large-scale computations, the SSSP task constitutes a complexity bottleneck. Therefore, it is desirable to replace exact SSSP computations with approximate ones. However this imposes a fundamental challenge since the existing constructions of low diameter graph decomposition with small edge cutting probabilities inherently rely on the subtractive form of the triangle inequality, which fails to hold under distance approximation. The current paper overcomes this obstacle by developing a technique termed blurry ball growing. By combining this technique with a clever algorithmic idea of Miller et al. (SPAA 2013), we obtain a construction of low diameter decompositions with small edge cutting probabilities which replaces exact SSSP computations by (a small number of) approximate ones. The utility of our approach is showcased by deriving efficient algorithms that work in the CONGEST, PRAM, and semi-streaming models of computation. As an application, we obtain metric tree embedding algorithms in the vein of Bartal (FOCS 1996) whose computational complexities in these models are optimal up to polylogarithmic factors. Our embeddings have the additional useful property that the tree can be mapped back to the original graph such that each edge is "used" only logaritmically many times, which is of interest for capacitated problems and simulating CONGEST algorithms on the tree into which the graph is embedded

    GraphMatch: Efficient Large-Scale Graph Construction for Structure from Motion

    Full text link
    We present GraphMatch, an approximate yet efficient method for building the matching graph for large-scale structure-from-motion (SfM) pipelines. Unlike modern SfM pipelines that use vocabulary (Voc.) trees to quickly build the matching graph and avoid a costly brute-force search of matching image pairs, GraphMatch does not require an expensive offline pre-processing phase to construct a Voc. tree. Instead, GraphMatch leverages two priors that can predict which image pairs are likely to match, thereby making the matching process for SfM much more efficient. The first is a score computed from the distance between the Fisher vectors of any two images. The second prior is based on the graph distance between vertices in the underlying matching graph. GraphMatch combines these two priors into an iterative "sample-and-propagate" scheme similar to the PatchMatch algorithm. Its sampling stage uses Fisher similarity priors to guide the search for matching image pairs, while its propagation stage explores neighbors of matched pairs to find new ones with a high image similarity score. Our experiments show that GraphMatch finds the most image pairs as compared to competing, approximate methods while at the same time being the most efficient.Comment: Published at IEEE 3DV 201

    On non-linear network embedding methods

    Get PDF
    As a linear method, spectral clustering is the only network embedding algorithm that offers both a provably fast computation and an advanced theoretical understanding. The accuracy of spectral clustering depends on the Cheeger ratio defined as the ratio between the graph conductance and the 2nd smallest eigenvalue of its normalizedLaplacian. In several graph families whose Cheeger ratio reaches its upper bound of Theta(n), the approximation power of spectral clustering is proven to perform poorly. Moreover, recent non-linear network embedding methods have surpassed spectral clustering by state-of-the-art performance with little to no theoretical understanding to back them. The dissertation includes work that: (1) extends the theory of spectral clustering in order to address its weakness and provide ground for a theoretical understanding of existing non-linear network embedding methods.; (2) provides non-linear extensions of spectral clustering with theoretical guarantees, e.g., via different spectral modification algorithms; (3) demonstrates the potentials of this approach on different types and sizes of graphs from industrial applications; and (4)makes a theory-informed use of artificial networks
    • …
    corecore