49,857 research outputs found

    Finite Affine Groups: Cycle Indices, Hall-Littlewood Polynomials, and Probabilistic Algorithms

    Get PDF
    The asymptotic study of the conjugacy classes of a random element of the finite affine group leads one to define a probability measure on the set of all partitions of all positive integers. Four different probabilistic understandings of this measure are given--three using symmetric function theory and one using Markov chains. This leads to non-trivial enumerative results. Cycle index generating functions are derived and are used to compute the large dimension limiting probabilities that an element of the affine group is separable, cyclic, or semisimple and to study the convergence to these limits. This yields the first examples of such computations for a maximal parabolic subgroup of a finite classical group.Comment: Revised version, to appear in J. Algebra. A few typos are fixed; no substantive change

    Polynomial tuning of multiparametric combinatorial samplers

    Full text link
    Boltzmann samplers and the recursive method are prominent algorithmic frameworks for the approximate-size and exact-size random generation of large combinatorial structures, such as maps, tilings, RNA sequences or various tree-like structures. In their multiparametric variants, these samplers allow to control the profile of expected values corresponding to multiple combinatorial parameters. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain subpatterns in strings. However, such a flexible control requires an additional non-trivial tuning procedure. In this paper, we propose an efficient polynomial-time, with respect to the number of tuned parameters, tuning algorithm based on convex optimisation techniques. Finally, we illustrate the efficiency of our approach using several applications of rational, algebraic and P\'olya structures including polyomino tilings with prescribed tile frequencies, planar trees with a given specific node degree distribution, and weighted partitions.Comment: Extended abstract, accepted to ANALCO2018. 20 pages, 6 figures, colours. Implementation and examples are available at [1] https://github.com/maciej-bendkowski/boltzmann-brain [2] https://github.com/maciej-bendkowski/multiparametric-combinatorial-sampler

    Generating Random Elements of Finite Distributive Lattices

    Full text link
    This survey article describes a method for choosing uniformly at random from any finite set whose objects can be viewed as constituting a distributive lattice. The method is based on ideas of the author and David Wilson for using ``coupling from the past'' to remove initialization bias from Monte Carlo randomization. The article describes several applications to specific kinds of combinatorial objects such as tilings, constrained lattice paths, and alternating-sign matrices.Comment: 13 page

    A generating algorithm for ribbon tableaux and spin polynomials

    Get PDF
    We describe a general algorithm for generating various families of ribbon tableaux and computing their spin polynomials. This algorithm is derived from a new matricial coding. An advantage of this new notation lies in the fact that it permits one to generate ribbon tableaux with skew shapes. This algorithm permits us to compute quickly big LLT polynomials in MuPAD-Combinat

    Reformulating Space Syntax: The Automatic Definition and Generation of Axial Lines and Axial Maps

    Get PDF
    Space syntax is a technique for measuring the relative accessibility of different locations in a spatial system which has been loosely partitioned into convex spaces.These spaces are approximated by straight lines, called axial lines, and the topological graph associated with their intersection is used to generate indices of distance, called integration, which are then used as proxies for accessibility. The most controversial problem in applying the technique involves the definition of these lines. There is no unique method for their generation, hence different users generate different sets of lines for the same application. In this paper, we explore this problem, arguing that to make progress, there need to be unambiguous, agreed procedures for generating such maps. The methods we suggest for generating such lines depend on defining viewsheds, called isovists, which can be approximated by their maximum diameters,these lengths being used to form axial maps similar to those used in space syntax. We propose a generic algorithm for sorting isovists according to various measures,approximating them by their diameters and using the axial map as a summary of the extent to which isovists overlap (intersect) and are accessible to one another. We examine the fields created by these viewsheds and the statistical properties of the maps created. We demonstrate our techniques for the small French town of Gassin used originally by Hillier and Hanson (1984) to illustrate the theory, exploring different criteria for sorting isovists, and different axial maps generated by changing the scale of resolution. This paper throws up as many problems as it solves but we believe it points the way to firmer foundations for space syntax

    Analyzing Boltzmann Samplers for Bose-Einstein Condensates with Dirichlet Generating Functions

    Full text link
    Boltzmann sampling is commonly used to uniformly sample objects of a particular size from large combinatorial sets. For this technique to be effective, one needs to prove that (1) the sampling procedure is efficient and (2) objects of the desired size are generated with sufficiently high probability. We use this approach to give a provably efficient sampling algorithm for a class of weighted integer partitions related to Bose-Einstein condensation from statistical physics. Our sampling algorithm is a probabilistic interpretation of the ordinary generating function for these objects, derived from the symbolic method of analytic combinatorics. Using the Khintchine-Meinardus probabilistic method to bound the rejection rate of our Boltzmann sampler through singularity analysis of Dirichlet generating functions, we offer an alternative approach to analyze Boltzmann samplers for objects with multiplicative structure.Comment: 20 pages, 1 figur
    • …
    corecore