3,864 research outputs found

    Entrapment: an important mechanism to explain the shortwave 3D radiative effect of clouds

    Get PDF
    Several mechanisms have previously been proposed to explain differences between the shortwave reflectance of realistic cloud scenes computed using the 1D independent column approximation (ICA) and 3D solutions of the radiative transfer equation. When the sun is low in the sky, interception of sunlight by cloud sides tends to increase reflectance relative to ICA estimates that neglect this effect. When the sun is high, 3D radiative transfer tends to make clouds less reflective, which we argue is explained by the mechanism of “entrapment” whereby horizontal transport of radiation beneath a cloud layer increases the chances, relative to the ICA, of light being absorbed by cloud or the surface. It is especially important for multilayered cloud scenes. We describe modifications to the previously described Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS) to represent different entrapment assumptions, and test their impact on 65 contrasting scenes from a cloud-resolving model. When entrapment is represented explicitly via a calculation of the mean horizontal distance traveled by reflected light, SPARTACUS predicts a mean “3D radiative effect” (the difference in top-of-atmosphere irradiances between 3D and ICA calculations) of 8.1 W m−2 for overhead sun. This is within 2% of broadband Monte Carlo calculations on the same scenes. The importance of entrapment is highlighted by the finding that the extreme assumptions in SPARTACUS of “zero entrapment” and “maximum entrapment” lead to corresponding mean 3D radiative effects of 1.7 and 19.6 W m−2, respectively

    Path-tracing Monte Carlo Library for 3D Radiative Transfer in Highly Resolved Cloudy Atmospheres

    Full text link
    Interactions between clouds and radiation are at the root of many difficulties in numerically predicting future weather and climate and in retrieving the state of the atmosphere from remote sensing observations. The large range of issues related to these interactions, and in particular to three-dimensional interactions, motivated the development of accurate radiative tools able to compute all types of radiative metrics, from monochromatic, local and directional observables, to integrated energetic quantities. In the continuity of this community effort, we propose here an open-source library for general use in Monte Carlo algorithms. This library is devoted to the acceleration of path-tracing in complex data, typically high-resolution large-domain grounds and clouds. The main algorithmic advances embedded in the library are those related to the construction and traversal of hierarchical grids accelerating the tracing of paths through heterogeneous fields in null-collision (maximum cross-section) algorithms. We show that with these hierarchical grids, the computing time is only weakly sensitivive to the refinement of the volumetric data. The library is tested with a rendering algorithm that produces synthetic images of cloud radiances. Two other examples are given as illustrations, that are respectively used to analyse the transmission of solar radiation under a cloud together with its sensitivity to an optical parameter, and to assess a parametrization of 3D radiative effects of clouds.Comment: Submitted to JAMES, revised and submitted again (this is v2

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    A genetic algorithm optimized fractal model to predict the constriction resistance from surface roughness measurements

    Get PDF
    The electrical contact resistance greatly influences the thermal behavior of substation connectors and other electrical equipment. During the design stage of such electrical devices, it is essential to accurately predict the contact resistance to achieve an optimal thermal behavior, thus ensuring contact stability and extended service life. This paper develops a genetic algorithm (GA) approach to determine the optimal values of the parameters of a fractal model of rough surfaces to accurately predict the measured value of the surface roughness. This GA-optimized fractal model provides an accurate prediction of the contact resistance when the electrical and mechanical properties of the contacting materials, surface roughness, contact pressure, and apparent area of contact are known. Experimental results corroborate the usefulness and accuracy of the proposed approach. Although the proposed model has been validated for substation connectors, it can also be applied in the design stage of many other electrical equipments.Postprint (author's final draft
    • 

    corecore