369 research outputs found

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Priority-Oriented Adaptive Control With QoS Guarantee for Wireless LANs.

    Get PDF
    In today’s wireless networks there is a great need for QoS, because of the time-bounded voice, audio and video traffic. A new QoS enhanced standard is being standardized by the IEEE 802.11e workgroup. It uses a contention free access mechanism called Hybrid Control Channel Access (HCCA) to guarantee QoS. However, HCCA is not efficient for all types of time-bounded traffic. This work proposes an alternative protocol which could be adapted in HCF (Hybrid Coordination Function). The Priority Oriented Adaptive Control with QoS Guarantee (POAC-QG) is a complete centralized channel access mechanism, it is able to guarantee QoS for all types of multimedia network applications, it enhances the parameterized traffic with priorities, and it supports time division access using slots. Furthermore, it instantly negotiates the quality levels of the traffic streams according to their priorities, supporting multiple streams to the best quality it can achieve. POAC-QG compared to HCCA, provides higher channel utilization, adapts better to the characteristics of the different traffic types, differentiates the traffic streams more efficiently using priorities, and generally exhibits superior performance

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Adaptive Control in Wireless Networks

    Get PDF

    A fair access mechanism based on TXOP in IEEE 802.11e wireless networks

    Get PDF
    IEEE 802.11e is an extension of IEEE 802.11 that provides Quality of Service (QoS) for the applications with different service requirements. This standard makes use of several parameters such as contention window; inter frame space time and transmission opportunity to create service differentiation in the network. Transmission opportunity (TXOP), that is the focus point of this paper, is the time interval, during which a station is allowed to transmit packets without any contention. As the fixed amounts of TXOPs are allocated to different stations, unfairness appears in the network. And when users with different data rates exist, IEEE 802.11e WLANs face the lack of fairness in the network. Because the higher data rate stations transfer more data than the lower rate ones. Several mechanisms have been proposed to solve this problem by generating new TXOPs adaptive to the network's traffic condition. In this paper, some proposed mechanisms are evaluated and according to their evaluated strengths and weaknesses, a new mechanism is proposed for TXOP determination in IEEE 802.11e wireless networks. Our new algorithm considers data rate, channel error rate and data packet lengths to calculate adaptive TXOPs for the stations. The simulation results show that the proposed algorithm leads to better fairness and also higher throughput and lower delays in the network.

    An Adaptive Common Control Channel MAC with Transmission Opportunity in IEEE 802.11ac

    Get PDF
    Spectral utilization is a major challenge in wireless ad hoc networks due in part to using limited network resources. For ad hoc networks, the bandwidth is shared among stations that can transmit data at any point in time. It  is important to maximize the throughput to enhance the network service. In this paper, we propose an adaptive multi-channel access with transmission opportunity protocol for multi-channel ad hoc networks, called AMCA-TXOP. For the purpose of coordination, the proposed protocol uses an adaptive common control channel over which the stations negotiate their channel selection based on the entire available bandwidth and then switch to the negotiated channel. AMCA-TXOP requires a single radio interface so that each station can listen to the control channel, which can overhear all agreements made by the other stations. This allows parallel transmission to multiple stations over various channels, prioritizing data traffic to achieve the quality-of-service requirements. The proposed approach can work with the 802.11ac protocol, which has expanded the bandwidth to 160 MHz by channel bonding. Simulations were conducted to demonstrate the throughput gains that can be achieved using the AMCA-TXOP protocol. Moreover, we compared our protocol with  the IEEE 802.11ac standard protocols
    • …
    corecore