3,902 research outputs found

    Robust Procedures for Obtaining Assembly Contact State Extremal Configurations

    Get PDF
    Two important components in the selection of an admittance that facilitates force-guided assembly are the identification of: 1) the set of feasible contact states, and 2) the set of configurations that span each contact state, i.e., the extremal configurations. We present a procedure to automatically generate both sets from CAD models of the assembly parts. In the procedure, all possible combinations of principle contacts are considered when generating hypothesized contact states. The feasibility of each is then evaluated in a genetic algorithm based optimization procedure. The maximum and minimum value of each of the 6 configuration variables spanning each contact state are obtained by again using genetic algorithms. Together, the genetic algorithm approach, the hierarchical data structure containing the states, the relationships among the states, and the extremals within each state are used to provide a reliable means of identifying all feasible contact states and their associated extremal configurations

    Generalized Sums over Histories for Quantum Gravity II. Simplicial Conifolds

    Full text link
    This paper examines the issues involved with concretely implementing a sum over conifolds in the formulation of Euclidean sums over histories for gravity. The first step in precisely formulating any sum over topological spaces is that one must have an algorithmically implementable method of generating a list of all spaces in the set to be summed over. This requirement causes well known problems in the formulation of sums over manifolds in four or more dimensions; there is no algorithmic method of determining whether or not a topological space is an n-manifold in five or more dimensions and the issue of whether or not such an algorithm exists is open in four. However, as this paper shows, conifolds are algorithmically decidable in four dimensions. Thus the set of 4-conifolds provides a starting point for a concrete implementation of Euclidean sums over histories in four dimensions. Explicit algorithms for summing over various sets of 4-conifolds are presented in the context of Regge calculus. Postscript figures available via anonymous ftp at black-hole.physics.ubc.ca (137.82.43.40) in file gen2.ps.Comment: 82pp., plain TeX, To appear in Nucl. Phys. B,FF-92-

    Computing largest circles separating two sets of segments

    Get PDF
    A circle CC separates two planar sets if it encloses one of the sets and its open interior disk does not meet the other set. A separating circle is a largest one if it cannot be locally increased while still separating the two given sets. An Theta(n log n) optimal algorithm is proposed to find all largest circles separating two given sets of line segments when line segments are allowed to meet only at their endpoints. In the general case, when line segments may intersect Ω(n2)\Omega(n^2) times, our algorithm can be adapted to work in O(n alpha(n) log n) time and O(n \alpha(n)) space, where alpha(n) represents the extremely slowly growing inverse of the Ackermann function.Comment: 14 pages, 3 figures, abstract presented at 8th Canadian Conference on Computational Geometry, 199

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs
    • 

    corecore