41,929 research outputs found

    Integral D-Finite Functions

    Full text link
    We propose a differential analog of the notion of integral closure of algebraic function fields. We present an algorithm for computing the integral closure of the algebra defined by a linear differential operator. Our algorithm is a direct analog of van Hoeij's algorithm for computing integral bases of algebraic function fields

    Computing invariants of algebraic group actions in arbitrary characteristic

    Full text link
    Let G be an affine algebraic group acting on an affine variety X. We present an algorithm for computing generators of the invariant ring K[X]^G in the case where G is reductive. Furthermore, we address the case where G is connected and unipotent, so the invariant ring need not be finitely generated. For this case, we develop an algorithm which computes K[X]^G in terms of a so-called colon-operation. From this, generators of K[X]^G can be obtained in finite time if it is finitely generated. Under the additional hypothesis that K[X] is factorial, we present an algorithm that finds a quasi-affine variety whose coordinate ring is K[X]^G. Along the way, we develop some techniques for dealing with non-finitely generated algebras. In particular, we introduce the finite generation locus ideal.Comment: 43 page

    Formal Desingularization of Surfaces - The Jung Method Revisited -

    Get PDF
    In this paper we propose the concept of formal desingularizations as a substitute for the resolution of algebraic varieties. Though a usual resolution of algebraic varieties provides more information on the structure of singularities there is evidence that the weaker concept is enough for many computational purposes. We give a detailed study of the Jung method and show how it facilitates an efficient computation of formal desingularizations for projective surfaces over a field of characteristic zero, not necessarily algebraically closed. The paper includes a generalization of Duval's Theorem on rational Puiseux parametrizations to the multivariate case and a detailed description of a system for multivariate algebraic power series computations.Comment: 33 pages, 2 figure

    An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation

    Get PDF
    We give an algorithm to compute the following cohomology groups on U = \C^n \setminus V(f) for any non-zero polynomial f \in \Q[x_1, ..., x_n]; 1. H^k(U, \C_U), \C_U is the constant sheaf on UU with stalk \C. 2. H^k(U, \Vsc), \Vsc is a locally constant sheaf of rank 1 on UU. We also give partial results on computation of cohomology groups on UU for a locally constant sheaf of general rank and on computation of H^k(\C^n \setminus Z, \C) where ZZ is a general algebraic set. Our algorithm is based on computations of Gr\"obner bases in the ring of differential operators with polynomial coefficients.Comment: 38 page

    Computing functions on Jacobians and their quotients

    Get PDF
    We show how to efficiently compute functions on jacobian varieties and their quotients. We deduce a quasi-optimal algorithm to compute (l,l)(l,l) isogenies between jacobians of genus two curves

    Development of symbolic algorithms for certain algebraic processes

    Get PDF
    This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested
    corecore