18,398 research outputs found

    Approximate Euclidean shortest paths in polygonal domains

    Get PDF
    Given a set P\mathcal{P} of hh pairwise disjoint simple polygonal obstacles in R2\mathbb{R}^2 defined with nn vertices, we compute a sketch Ω\Omega of P\mathcal{P} whose size is independent of nn, depending only on hh and the input parameter ϵ\epsilon. We utilize Ω\Omega to compute a (1+ϵ)(1+\epsilon)-approximate geodesic shortest path between the two given points in O(n+h((lgn)+(lgh)1+δ+(1ϵlghϵ)))O(n + h((\lg{n}) + (\lg{h})^{1+\delta} + (\frac{1}{\epsilon}\lg{\frac{h}{\epsilon}}))) time. Here, ϵ\epsilon is a user parameter, and δ\delta is a small positive constant (resulting from the time for triangulating the free space of P\cal P using the algorithm in \cite{journals/ijcga/Bar-YehudaC94}). Moreover, we devise a (2+ϵ)(2+\epsilon)-approximation algorithm to answer two-point Euclidean distance queries for the case of convex polygonal obstacles.Comment: a few updates; accepted to ISAAC 201

    Robust Proximity Search for Balls using Sublinear Space

    Get PDF
    Given a set of n disjoint balls b1, . . ., bn in IRd, we provide a data structure, of near linear size, that can answer (1 \pm \epsilon)-approximate kth-nearest neighbor queries in O(log n + 1/\epsilon^d) time, where k and \epsilon are provided at query time. If k and \epsilon are provided in advance, we provide a data structure to answer such queries, that requires (roughly) O(n/k) space; that is, the data structure has sublinear space requirement if k is sufficiently large

    Approximate Nearest Neighbor Search for Low Dimensional Queries

    Full text link
    We study the Approximate Nearest Neighbor problem for metric spaces where the query points are constrained to lie on a subspace of low doubling dimension, while the data is high-dimensional. We show that this problem can be solved efficiently despite the high dimensionality of the data.Comment: 25 page

    Space Exploration via Proximity Search

    Get PDF
    We investigate what computational tasks can be performed on a point set in d\Re^d, if we are only given black-box access to it via nearest-neighbor search. This is a reasonable assumption if the underlying point set is either provided implicitly, or it is stored in a data structure that can answer such queries. In particular, we show the following: (A) One can compute an approximate bi-criteria kk-center clustering of the point set, and more generally compute a greedy permutation of the point set. (B) One can decide if a query point is (approximately) inside the convex-hull of the point set. We also investigate the problem of clustering the given point set, such that meaningful proximity queries can be carried out on the centers of the clusters, instead of the whole point set

    Down the Rabbit Hole: Robust Proximity Search and Density Estimation in Sublinear Space

    Full text link
    For a set of nn points in d\Re^d, and parameters kk and \eps, we present a data structure that answers (1+\eps,k)-\ANN queries in logarithmic time. Surprisingly, the space used by the data-structure is \Otilde (n /k); that is, the space used is sublinear in the input size if kk is sufficiently large. Our approach provides a novel way to summarize geometric data, such that meaningful proximity queries on the data can be carried out using this sketch. Using this, we provide a sublinear space data-structure that can estimate the density of a point set under various measures, including: \begin{inparaenum}[(i)] \item sum of distances of kk closest points to the query point, and \item sum of squared distances of kk closest points to the query point. \end{inparaenum} Our approach generalizes to other distance based estimation of densities of similar flavor. We also study the problem of approximating some of these quantities when using sampling. In particular, we show that a sample of size \Otilde (n /k) is sufficient, in some restricted cases, to estimate the above quantities. Remarkably, the sample size has only linear dependency on the dimension

    Analysis of approximate nearest neighbor searching with clustered point sets

    Full text link
    We present an empirical analysis of data structures for approximate nearest neighbor searching. We compare the well-known optimized kd-tree splitting method against two alternative splitting methods. The first, called the sliding-midpoint method, which attempts to balance the goals of producing subdivision cells of bounded aspect ratio, while not producing any empty cells. The second, called the minimum-ambiguity method is a query-based approach. In addition to the data points, it is also given a training set of query points for preprocessing. It employs a simple greedy algorithm to select the splitting plane that minimizes the average amount of ambiguity in the choice of the nearest neighbor for the training points. We provide an empirical analysis comparing these two methods against the optimized kd-tree construction for a number of synthetically generated data and query sets. We demonstrate that for clustered data and query sets, these algorithms can provide significant improvements over the standard kd-tree construction for approximate nearest neighbor searching.Comment: 20 pages, 8 figures. Presented at ALENEX '99, Baltimore, MD, Jan 15-16, 199

    Efficient Scalable Accurate Regression Queries in In-DBMS Analytics

    Get PDF
    Recent trends aim to incorporate advanced data analytics capabilities within DBMSs. Linear regression queries are fundamental to exploratory analytics and predictive modeling. However, computing their exact answers leaves a lot to be desired in terms of efficiency and scalability. We contribute a novel predictive analytics model and associated regression query processing algorithms, which are efficient, scalable and accurate. We focus on predicting the answers to two key query types that reveal dependencies between the values of different attributes: (i) mean-value queries and (ii) multivariate linear regression queries, both within specific data subspaces defined based on the values of other attributes. Our algorithms achieve many orders of magnitude improvement in query processing efficiency and nearperfect approximations of the underlying relationships among data attributes
    corecore