4,001 research outputs found

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    A petri nets based design of cognitive radios using distributed signal processing

    Get PDF
    AbstractReconfigurability for transceivers for wireless access networks like Bluetooth, WiMAX and W-LAN will become increasingly important. An appropriately flexible and reliable software architecture, allowing the concurrent processing of different controlling tasks for wireless terminals will hence be an important asset. Already during the 1980s reconfigurable receivers were developed for radio intelligence in the short wave range and the concept of software radio (SR) was born. A software defined radio (SDR) is a practical version of an SR: The received signals are sampled after a suitable band selection filter, usually in the base band or a low intermediate frequency band. The signal processing in both SR and SDR requires a considerable amount of concurrent processes. Since Petri nets (PNs) are both simple and strong tools for the description and the design of such concurrent processes, it is recommendable to deploy them for SDR. SDRs have paved the way towards cognitive radios (CRs), which are based on SDRs that additionally sense their environments, track changes, and react upon their findings. A CR is an autonomous unit in a communications environment that frequently exchanges information with the networks it is able to access as well as with other CRs. In this communication, the authors will introduce a realization concept for a CR which forms the basis of a hardware/firmware demonstrator developed by the authors. This demonstrator makes use of a digital signal processor (DSP) which forms the core of the design and flexibly programmable hardware accelerators based on field programmable gate arrays (FPGAs). The authors will describe the solution also in view of the recent developments of IEEE 802.2

    The walking robot project

    Get PDF
    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight

    Neuromorphic deep convolutional neural network learning systems for FPGA in real time

    Get PDF
    Deep Learning algorithms have become one of the best approaches for pattern recognition in several fields, including computer vision, speech recognition, natural language processing, and audio recognition, among others. In image vision, convolutional neural networks stand out, due to their relatively simple supervised training and their efficiency extracting features from a scene. Nowadays, there exist several implementations of convolutional neural networks accelerators that manage to perform these networks in real time. However, the number of operations and power consumption of these implementations can be reduced using a different processing paradigm as neuromorphic engineering. Neuromorphic engineering field studies the behavior of biological and inner systems of the human neural processing with the purpose of design analog, digital or mixed-signal systems to solve problems inspired in how human brain performs complex tasks, replicating the behavior and properties of biological neurons. Neuromorphic engineering tries to give an answer to how our brain is capable to learn and perform complex tasks with high efficiency under the paradigm of spike-based computation. This thesis explores both frame-based and spike-based processing paradigms for the development of hardware architectures for visual pattern recognition based on convolutional neural networks. In this work, two FPGA implementations of convolutional neural networks accelerator architectures for frame-based using OpenCL and SoC technologies are presented. Followed by a novel neuromorphic convolution processor for spike-based processing paradigm, which implements the same behaviour of leaky integrate-and-fire neuron model. Furthermore, it reads the data in rows being able to perform multiple layers in the same chip. Finally, a novel FPGA implementation of Hierarchy of Time Surfaces algorithm and a new memory model for spike-based systems are proposed

    Machine Vision for intelligent Semi-Autonomous Transport (MV-iSAT)

    Get PDF
    AbstractThe primary focus was to develop a vision-based system suitable for the navigation and mapping of an indoor, single-floor environment. Devices incorporating an iSAT system could be used as ‘self-propelled’ shopping carts in high-end retail stores or as automated luggage routing systems in airports. The primary design feature of this system is its Field Programmable Gate Array (FPGA) core, chosen for its strengths in parallelism and pipelining. Image processing has been successfully demonstrated in real-time using FPGA hardware. Remote feedback and monitoring was broadcasted to a host computer via a local area network. Deadlines as short as 40ns have been met by a custom built memory-based arbitration scheme. It is hoped that the iSAT platform will provide the basis for future work on advanced FPGA-based machine-vision algorithms for mobile robotics

    VLSI smart sensor-processor for fingerprint comparison

    Get PDF

    Method for Reading Sensors and Controlling Actuators Using Audio Interfaces of Mobile Devices

    Get PDF
    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrĂłnicos embebidos basados en tecnologĂ­a hardware dinĂĄmicamente reconfigurable –disponible a travĂ©s de dispositivos lĂłgicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguraciĂłn que proporcione a la FPGA la capacidad de reconfiguraciĂłn dinĂĄmica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicaciĂłn particionada en tareas multiplexadas en tiempo y en espacio, optimizando asĂ­ su implementaciĂłn fĂ­sica –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estĂĄtico (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalĂșa el flujo de diseño de dicha tecnologĂ­a a travĂ©s del prototipado de varias aplicaciones de ingenierĂ­a (sistemas de control, coprocesadores aritmĂ©ticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotaciĂłn en la industria.Resum Aquesta tesi doctoral estĂ  orientada al disseny de sistemes electrĂČnics empotrats basats en tecnologia hardware dinĂ micament reconfigurable –disponible mitjançant dispositius lĂČgics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguraciĂł que proporcioni a la FPGA la capacitat de reconfiguraciĂł dinĂ mica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicaciĂł particionada en tasques multiplexades en temps i en espai, optimizant aixĂ­ la seva implementaciĂł fĂ­sica –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potĂšncia dissipada– comparada amb altres alternatives basades en hardware estĂ tic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalĂșa el fluxe de disseny d’aquesta tecnologia a travĂ©s del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmĂštics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotaciĂł a la indĂșstria
    • 

    corecore