9,926 research outputs found

    Can Computer Algebra be Liberated from its Algebraic Yoke ?

    Full text link
    So far, the scope of computer algebra has been needlessly restricted to exact algebraic methods. Its possible extension to approximate analytical methods is discussed. The entangled roles of functional analysis and symbolic programming, especially the functional and transformational paradigms, are put forward. In the future, algebraic algorithms could constitute the core of extended symbolic manipulation systems including primitives for symbolic approximations.Comment: 8 pages, 2-column presentation, 2 figure

    Computational aerodynamics and artificial intelligence

    Get PDF
    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics

    Bounding Option Prices Using SDP With Change Of Numeraire

    Get PDF
    Recently, given the first few moments, tight upper and lower bounds of the no arbitrage prices can be obtained by solving semidefinite programming (SDP) or linear programming (LP) problems. In this paper, we compare SDP and LP formulations of the European-style options pricing problem and prefer SDP formulations due to the simplicity of moments constraints. We propose to employ the technique of change of numeraire when using SDP to bound the European type of options. In fact, this problem can then be cast as a truncated Hausdorff moment problem which has necessary and sufficient moment conditions expressed by positive semidefinite moment and localizing matrices. With four moments information we show stable numerical results for bounding European call options and exchange options. Moreover, A hedging strategy is also identified by the dual formulation.moments of measures, semidefinite programming, linear programming, options pricing, change of numeraire
    corecore