4,360 research outputs found

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    The Sigma-Semantics: A Comprehensive Semantics for Functional Programs

    Get PDF
    A comprehensive semantics for functional programs is presented, which generalizes the well-known call-by-value and call-by-name semantics. By permitting a separate choice between call-by value and call-by-name for every argument position of every function and parameterizing the semantics by this choice we abstract from the parameter-passing mechanism. Thus common and distinguishing features of all instances of the sigma-semantics, especially call-by-value and call-by-name semantics, are highlighted. Furthermore, a property can be validated for all instances of the sigma-semantics by a single proof. This is employed for proving the equivalence of the given denotational (fixed-point based) and two operational (reduction based) definitions of the sigma-semantics. We present and apply means for very simple proofs of equivalence with the denotational sigma-semantics for a large class of reduction-based sigma-semantics. Our basis are simple first-order constructor-based functional programs with patterns

    The Sigma-Semantics: A Comprehensive Semantics for Functional Programs

    Get PDF
    A comprehensive semantics for functional programs is presented, which generalizes the well-known call-by-value and call-by-name semantics. By permitting a separate choice between call-by value and call-by-name for every argument position of every function and parameterizing the semantics by this choice we abstract from the parameter-passing mechanism. Thus common and distinguishing features of all instances of the sigma-semantics, especially call-by-value and call-by-name semantics, are highlighted. Furthermore, a property can be validated for all instances of the sigma-semantics by a single proof. This is employed for proving the equivalence of the given denotational (fixed-point based) and two operational (reduction based) definitions of the sigma-semantics. We present and apply means for very simple proofs of equivalence with the denotational sigma-semantics for a large class of reduction-based sigma-semantics. Our basis are simple first-order constructor-based functional programs with patterns

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Observation and abstract behaviour in specification and implementation of state-based systems

    Get PDF
    Classical algebraic specification is an accepted framework for specification. A criticism which applies is the fact that it is functional, not based on a notion of state as most software development and implementation languages are. We formalise the idea of a state-based object or abstract machine using algebraic means. In contrast to similar approaches we consider dynamic logic instead of equational logic as the framework for specification and implementation. The advantage is a more expressive language allowing us to specify safety and liveness conditions. It also allows a clearer distinction of functional and state-based parts which require different treatment in order to achieve behavioural abstraction when necessary. We shall in particular focus on abstract behaviour and observation. A behavioural notion of satisfaction for state-elements is needed in order to abstract from irrelevant details of the state realisation
    • …
    corecore