7,759 research outputs found

    An Algebraic Approach to Valued Constraint Satisfaction

    Get PDF
    [EN]We study the complexity of the valued CSP (VCSP, for short) over arbitrary templates, taking the general framework of integral bounded linearly order monoids as valuation structures. The class of problems considered here subsumes and generalizes the most common one in VCSP literature, since both monoidal and lattice conjunction operations are allowed in the formulation of constraints. Restricting to locally finite monoids, we introduce a notion of polymorphism that captures the pp-definability in the style of Geiger’s result. As a consequence, sufficient conditions for tractability of the classical CSP, related to the existence of certain polymorphisms, are shown to serve also for the valued case. Finally, we establish the dichotomy conjecture for the VCSP, modulo the dichotomy for classical CSP.The work was partly supported by the grant No. GA17-04630S of the Czech Science Foundation and partly by the long-term strategic development financing of the Institute of Computer Science (RVO:67985807).Peer reviewe

    Binarisation via Dualisation for Valued Constraints

    Get PDF
    Constraint programming is a natural paradigm for many combinatorial optimisation problems. The complexity of constraint satisfaction for various forms of constraints has been widely-studied, both to inform the choice of appropriate algorithms, and to understand better the boundary between polynomial-time complexity and NP-hardness. In constraint programming it is well-known that any constraint satisfaction problem can be converted to an equivalent binary problem using the so-called dual encoding. Using this standard approach any fixed collection of constraints, of arbitrary arity, can be converted to an equivalent set of constraints of arity at most two. Here we show that this transformation, although it changes the domain of the constraints, preserves all the relevant algebraic properties that determine the complexity. Moreover, we show that the dual encoding preserves many of the key algorithmic properties of the original instance. We also show that this remains true for more general valued constraint languages, where constraints may assign different cost values to different assignments. Hence, we obtain a simple proof of the fact that to classify the computational complexity of all valued constraint languages it suffices to classify only binary valued constraint languages

    The complexity of conservative finite-valued CSPs

    Full text link
    We study the complexity of valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a \emph{constraint language}, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We consider the case of so-called \emph{conservative} languages; that is, languages containing all unary cost functions, thus allowing arbitrary restrictions on the domains of the variables. This problem has been studied by Bulatov [LICS'03] for {0,∞}\{0,\infty\}-valued languages (i.e. CSP), by Cohen~\etal\ (AIJ'06) for Boolean domains, by Deineko et al. (JACM'08) for {0,1}\{0,1\}-valued cost functions (i.e. Max-CSP), and by Takhanov (STACS'10) for {0,∞}\{0,\infty\}-valued languages containing all finite-valued unary cost functions (i.e. Min-Cost-Hom). We give an elementary proof of a complete complexity classification of conservative finite-valued languages: we show that every conservative finite-valued language is either tractable or NP-hard. This is the \emph{first} dichotomy result for finite-valued VCSPs over non-Boolean domains.Comment: 15 page

    Algebraic Properties of Valued Constraint Satisfaction Problem

    Full text link
    The paper presents an algebraic framework for optimization problems expressible as Valued Constraint Satisfaction Problems. Our results generalize the algebraic framework for the decision version (CSPs) provided by Bulatov et al. [SICOMP 2005]. We introduce the notions of weighted algebras and varieties and use the Galois connection due to Cohen et al. [SICOMP 2013] to link VCSP languages to weighted algebras. We show that the difficulty of VCSP depends only on the weighted variety generated by the associated weighted algebra. Paralleling the results for CSPs we exhibit a reduction to cores and rigid cores which allows us to focus on idempotent weighted varieties. Further, we propose an analogue of the Algebraic CSP Dichotomy Conjecture; prove the hardness direction and verify that it agrees with known results for VCSPs on two-element sets [Cohen et al. 2006], finite-valued VCSPs [Thapper and Zivny 2013] and conservative VCSPs [Kolmogorov and Zivny 2013].Comment: arXiv admin note: text overlap with arXiv:1207.6692 by other author

    The Power of Linear Programming for Valued CSPs

    Full text link
    A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. An instance of the problem is specified by a sum of cost functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs). Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation. Using this result, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: Corrected a few typo

    Necessary conditions for tractability of valued CSPs

    Full text link
    The connection between constraint languages and clone theory has been a fruitful line of research on the complexity of constraint satisfaction problems. In a recent result, Cohen et al. [SICOMP'13] have characterised a Galois connection between valued constraint languages and so-called weighted clones. In this paper, we study the structure of weighted clones. We extend the results of Creed and Zivny from [CP'11/SICOMP'13] on types of weightings necessarily contained in every nontrivial weighted clone. This result has immediate computational complexity consequences as it provides necessary conditions for tractability of weighted clones and thus valued constraint languages. We demonstrate that some of the necessary conditions are also sufficient for tractability, while others are provably not.Comment: To appear in SIAM Journal on Discrete Mathematics (SIDMA

    A Galois Connection for Weighted (Relational) Clones of Infinite Size

    Full text link
    A Galois connection between clones and relational clones on a fixed finite domain is one of the cornerstones of the so-called algebraic approach to the computational complexity of non-uniform Constraint Satisfaction Problems (CSPs). Cohen et al. established a Galois connection between finitely-generated weighted clones and finitely-generated weighted relational clones [SICOMP'13], and asked whether this connection holds in general. We answer this question in the affirmative for weighted (relational) clones with real weights and show that the complexity of the corresponding valued CSPs is preserved

    Hybrid VCSPs with crisp and conservative valued templates

    Get PDF
    A constraint satisfaction problem (CSP) is a problem of computing a homomorphism R→Γ{\bf R} \rightarrow {\bf \Gamma} between two relational structures. Analyzing its complexity has been a very fruitful research direction, especially for fixed template CSPs, denoted CSP(Γ)CSP({\bf \Gamma}), in which the right side structure Γ{\bf \Gamma} is fixed and the left side structure R{\bf R} is unconstrained. Recently, the hybrid setting, written CSPH(Γ)CSP_{\mathcal{H}}({\bf \Gamma}), where both sides are restricted simultaneously, attracted some attention. It assumes that R{\bf R} is taken from a class of relational structures H\mathcal{H} that additionally is closed under inverse homomorphisms. The last property allows to exploit algebraic tools that have been developed for fixed template CSPs. The key concept that connects hybrid CSPs with fixed-template CSPs is the so called "lifted language". Namely, this is a constraint language ΓR{\bf \Gamma}_{{\bf R}} that can be constructed from an input R{\bf R}. The tractability of that language for any input R∈H{\bf R}\in\mathcal{H} is a necessary condition for the tractability of the hybrid problem. In the first part we investigate templates Γ{\bf \Gamma} for which the latter condition is not only necessary, but also is sufficient. We call such templates Γ{\bf \Gamma} widely tractable. For this purpose, we construct from Γ{\bf \Gamma} a new finite relational structure Γ′{\bf \Gamma}' and define H0\mathcal{H}_0 as a class of structures homomorphic to Γ′{\bf \Gamma}'. We prove that wide tractability is equivalent to the tractability of CSPH0(Γ)CSP_{\mathcal{H}_0}({\bf \Gamma}). Our proof is based on the key observation that R{\bf R} is homomorphic to Γ′{\bf \Gamma}' if and only if the core of ΓR{\bf \Gamma}_{{\bf R}} is preserved by a Siggers polymorphism. Analogous result is shown for valued conservative CSPs.Comment: 21 pages. arXiv admin note: text overlap with arXiv:1504.0706
    • …
    corecore