11,155 research outputs found

    Multilevel leapfrogging initialization for quantum approximate optimization algorithm

    Full text link
    The quantum approximate optimization algorithm (QAOA) is a prospective hybrid quantum-classical algorithm widely used to solve combinatorial optimization problems. However, the external parameter optimization required in QAOA tends to consume extensive resources to find the optimal parameters of the parameterized quantum circuit, which may be the bottleneck of QAOA. To meet this challenge, we first propose multilevel leapfrogging learning (M-Leap) that can be extended to quantum reinforcement learning, quantum circuit design, and other domains. M-Leap incrementally increases the circuit depth during optimization and predicts the initial parameters at level p+rp+r (r>1r>1) based on the optimized parameters at level pp, cutting down the optimization rounds. Then, we propose a multilevel leapfrogging-interpolation strategy (MLI) for initializing optimizations by combining M-Leap with the interpolation technique. We benchmark its performance on the Maxcut problem. Compared with the Interpolation-based strategy (INTERP), MLI cuts down at least half the number of rounds of optimization for the classical outer learning loop. Remarkably, the simulation results demonstrate that the running time of MLI is 1/3 of INTERP when MLI gets quasi-optimal solutions. In addition, we present the greedy-MLI strategy by introducing multi-start, which is an extension of MLI. The simulation results show that greedy-MLI can get a higher average performance than the remaining two methods. With their efficiency to find the quasi-optima in a fraction of costs, our methods may shed light in other quantum algorithms

    Magnetic Control of Acoustic Resonators and Metamaterials

    Get PDF
    The magneto-elastic coupling between spin and acoustic excitations offers an excellent opportunity to combine, within the same signal processing devices, the magnetic tuneability and re-programmability inherent to magnonics with the energy efficiency of phononics. Relevant recent studies have focused on characterisation of the interaction strength in magnetoacoustic devices and on the excitation and detection of an acoustically induced magnetic signal. The work presented in this thesis focuses on the magnetic control of propagating acoustic waves, with the aim to reveal and to characterise the signatures of the magneto-elastic coupling in reflection and transmission of acoustic waves in magnetoacoustic metamaterials, and to explore their tuning using magnetic stimuli

    System Identification on the Families of Auto-Regressive with Least-Square-Batch Algorithm

    Full text link
    The theories of system identification have been highly elaborated so as to achieve the true system. This paper much discuses regarding the stochastic processes along with the divergent of whether or not the system has zero-mean under scenario of either white and coloured noise. The mathematical foundations, including mean, variance, covariance, optimal parameters, along with some modified scenarios among them, are presented in detail from various system along with some basic idea behind them. The families of auto-regressive (1) and (2) are compared both mathematical and simulation in order to obtain the best design approaching the true system, Moreover, the least-square algorithm is used to examine the effectiveness of some number of iteration along with "batch" theoremComment: 8 pages; 10 figure

    Pipelined Architecture for Soft-decision Iterative Projection Aggregation Decoding for RM Codes

    Full text link
    The recently proposed recursive projection-aggregation (RPA) decoding algorithm for Reed-Muller codes has received significant attention as it provides near-ML decoding performance at reasonable complexity for short codes. However, its complicated structure makes it unsuitable for hardware implementation. Iterative projection-aggregation (IPA) decoding is a modified version of RPA decoding that simplifies the hardware implementation. In this work, we present a flexible hardware architecture for the IPA decoder that can be configured from fully-sequential to fully-parallel, thus making it suitable for a wide range of applications with different constraints and resource budgets. Our simulation and implementation results show that the IPA decoder has 41% lower area consumption, 44% lower latency, four times higher throughput, but currently seven times higher power consumption for a code with block length of 128 and information length of 29 compared to a state-of-the-art polar successive cancellation list (SCL) decoder with comparable decoding performance

    Structured Radial Basis Function Network: Modelling Diversity for Multiple Hypotheses Prediction

    Full text link
    Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions. It can be tackled with multiple hypotheses frameworks but with the difficulty of combining them efficiently in a learning model. A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems. The predictors are regression models of any type that can form centroidal Voronoi tessellations which are a function of their losses during training. It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution and is equivalent to interpolating the meta-loss of the predictors, the loss being a zero set of the interpolation error. This model has a fixed-point iteration algorithm between the predictors and the centers of the basis functions. Diversity in learning can be controlled parametrically by truncating the tessellation formation with the losses of individual predictors. A closed-form solution with least-squares is presented, which to the authors knowledge, is the fastest solution in the literature for multiple hypotheses and structured predictions. Superior generalization performance and computational efficiency is achieved using only two-layer neural networks as predictors controlling diversity as a key component of success. A gradient-descent approach is introduced which is loss-agnostic regarding the predictors. The expected value for the loss of the structured model with Gaussian basis functions is computed, finding that correlation between predictors is not an appropriate tool for diversification. The experiments show outperformance with respect to the top competitors in the literature.Comment: 63 Pages, 40 Figure

    2023-2024 Boise State University Undergraduate Catalog

    Get PDF
    This catalog is primarily for and directed at students. However, it serves many audiences, such as high school counselors, academic advisors, and the public. In this catalog you will find an overview of Boise State University and information on admission, registration, grades, tuition and fees, financial aid, housing, student services, and other important policies and procedures. However, most of this catalog is devoted to describing the various programs and courses offered at Boise State

    Molecular dynamics simulations of nanoclusters in neuromorphic systems

    Get PDF
    Neuromorphic computing is a new computing paradigm that deals with computing tasks using inter-connected artificial neurons inspired by the natural neurons in the human brain. This computational architecture is more efficient in performing many complex tasks such a pattern recognition and has promise at overcoming some of the limitations of conventional computers. Among the emerging types of artificial neurons, a cluster-based neuromorphic device is a promising system with good costefficiency because of a simple fabrication process. This device functions using the formation and breakage of the connections (“synapses”) between clusters, driven by the bias voltage applied to the clusters. The mechanisms of the formation and breakage of these connections are thus of the utmost interest. In this thesis, the molecular dynamics simulation method is used to explore the mechanisms of the formation and breakage of the connections (“filaments”) between the clusters in a model of neuromorphic device. First, the Joule heating mechanism of filament breakage is explored using a model consisting of Au nanowire that connects two Au1415 clusters. Upon heating, the atoms of the nanofilament gradually aggregate towards the clusters, causing the middle of the wire to graduallythin and then suddenly break. Most of the system remains crystalline during this process, but the centre becomes molten. The terminal clusters increase the melting point of the nanowires by fixing them and act as recrystallisation regions. A strong dependence of the breaking temperature is found not only on the width of the nanowires but also their length and atomic structure. Secondly, the bridge formation and thermal breaking processes between Au1415 clusters on a graphite substrate are also simulated. The bridging process , which can heal a broken filament, is driven by diffusion of gold along the graphite substrate. The characteristic times of bridge formation are explored at elevated simulation temperatures to estimate the longer characteristic times of formation at room-temperature conditions. The width of the bridge formed has a power-law dependence on the simulation time, and the mechanism is a combination of diffusion and viscous flow. Simulations of bridgebreaking are also conducted and reveal the existence of a voltage threshold that must be reached to activate the breakage. The role of the substrate in the bridge formation and breakage processes is revealed as a medium of diffusion. Lastly, to explore future potential cluster materials, the thermal behaviour of Pb-Al core-shell clusters is studied. The core and shell are found to melt separately. In fact, the core atoms of nanoclusters tend to escape their shells and partially cover them, leading to a preference for a segregated state. The melting point of the core can either be depressed or elevated, depending on the thickness of the shell due to different mechanisms

    Tutorial: Nonlinear magnonics

    Full text link
    Nonlinear magnonics studies the nonlinear interaction between magnons and other physical platforms (phonon, photon, qubit, spin texture) to generate novel magnon states for information processing. In this tutorial, we first introduce the nonlinear interactions of magnons in pure magnetic systems and hybrid magnon-phonon and magnon-photon systems. Then we show how these nonlinear interactions can generate exotic magnonic phenomena. In the classical regime, we will cover the parametric excitation of magnons, bistability and multistability, and the magnonic frequency comb. In the quantum regime, we will discuss the single magnon state, Schr\"{o}dinger cat state and the entanglement and quantum steering among magnons, photons and phonons. The applications of the hybrid magnonics systems in quantum transducer and sensing will also be presented. Finally, we outlook the future development direction of nonlinear magnonics.Comment: 50 pages, 26 figure

    SU(2) Symmetry of Coherent Photons and Application to Poincar\'e Rotator

    Full text link
    Lie algebra is a hidden mathematical structure behind various quantum systems realised in nature. Here, we consider SU(2)SU(2) wavefunctions for polarisation states of coherent photons emitted from a laser source, and discuss the relationship to spin expectation values with SO(3) symmetry based on isomorphism theorems. In particular, we found rotated half-wave-plates correspond to mirror reflections in the Poincar\'e sphere, which do not form a subgroup in the projected O(2) plane due to anti-hermitian property. This could be overcome experimentally by preparing another half-wave-plate to realise a pristine rotator in SU(2)SU(2), which allows arbitrary rotation angles determined by the physical rotation. By combining another 2 quarter-wave-plates, we could also construct a genuine phase-shifter, thus, realising passive control over the full Poincar\'e sphere

    Algorithmic Security is Insufficient: A Comprehensive Survey on Implementation Attacks Haunting Post-Quantum Security

    Full text link
    This survey is on forward-looking, emerging security concerns in post-quantum era, i.e., the implementation attacks for 2022 winners of NIST post-quantum cryptography (PQC) competition and thus the visions, insights, and discussions can be used as a step forward towards scrutinizing the new standards for applications ranging from Metaverse, Web 3.0 to deeply-embedded systems. The rapid advances in quantum computing have brought immense opportunities for scientific discovery and technological progress; however, it poses a major risk to today's security since advanced quantum computers are believed to break all traditional public-key cryptographic algorithms. This has led to active research on PQC algorithms that are believed to be secure against classical and powerful quantum computers. However, algorithmic security is unfortunately insufficient, and many cryptographic algorithms are vulnerable to side-channel attacks (SCA), where an attacker passively or actively gets side-channel data to compromise the security properties that are assumed to be safe theoretically. In this survey, we explore such imminent threats and their countermeasures with respect to PQC. We provide the respective, latest advancements in PQC research, as well as assessments and providing visions on the different types of SCAs
    • …
    corecore