5,726 research outputs found

    Detecting Ontological Conflicts in Protocols between Semantic Web Services

    Full text link
    The task of verifying the compatibility between interacting web services has traditionally been limited to checking the compatibility of the interaction protocol in terms of message sequences and the type of data being exchanged. Since web services are developed largely in an uncoordinated way, different services often use independently developed ontologies for the same domain instead of adhering to a single ontology as standard. In this work we investigate the approaches that can be taken by the server to verify the possibility to reach a state with semantically inconsistent results during the execution of a protocol with a client, if the client ontology is published. Often database is used to store the actual data along with the ontologies instead of storing the actual data as a part of the ontology description. It is important to observe that at the current state of the database the semantic conflict state may not be reached even if the verification done by the server indicates the possibility of reaching a conflict state. A relational algebra based decision procedure is also developed to incorporate the current state of the client and the server databases in the overall verification procedure

    Queries with Guarded Negation (full version)

    Full text link
    A well-established and fundamental insight in database theory is that negation (also known as complementation) tends to make queries difficult to process and difficult to reason about. Many basic problems are decidable and admit practical algorithms in the case of unions of conjunctive queries, but become difficult or even undecidable when queries are allowed to contain negation. Inspired by recent results in finite model theory, we consider a restricted form of negation, guarded negation. We introduce a fragment of SQL, called GN-SQL, as well as a fragment of Datalog with stratified negation, called GN-Datalog, that allow only guarded negation, and we show that these query languages are computationally well behaved, in terms of testing query containment, query evaluation, open-world query answering, and boundedness. GN-SQL and GN-Datalog subsume a number of well known query languages and constraint languages, such as unions of conjunctive queries, monadic Datalog, and frontier-guarded tgds. In addition, an analysis of standard benchmark workloads shows that most usage of negation in SQL in practice is guarded negation

    Faster Query Answering in Probabilistic Databases using Read-Once Functions

    Full text link
    A boolean expression is in read-once form if each of its variables appears exactly once. When the variables denote independent events in a probability space, the probability of the event denoted by the whole expression in read-once form can be computed in polynomial time (whereas the general problem for arbitrary expressions is #P-complete). Known approaches to checking read-once property seem to require putting these expressions in disjunctive normal form. In this paper, we tell a better story for a large subclass of boolean event expressions: those that are generated by conjunctive queries without self-joins and on tuple-independent probabilistic databases. We first show that given a tuple-independent representation and the provenance graph of an SPJ query plan without self-joins, we can, without using the DNF of a result event expression, efficiently compute its co-occurrence graph. From this, the read-once form can already, if it exists, be computed efficiently using existing techniques. Our second and key contribution is a complete, efficient, and simple to implement algorithm for computing the read-once forms (whenever they exist) directly, using a new concept, that of co-table graph, which can be significantly smaller than the co-occurrence graph.Comment: Accepted in ICDT 201

    Datalog and Constraint Satisfaction with Infinite Templates

    Full text link
    On finite structures, there is a well-known connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infinite templates. If the template Gamma is omega-categorical, we present various equivalent characterizations of those Gamma such that the constraint satisfaction problem (CSP) for Gamma can be solved by a Datalog program. We also show that CSP(Gamma) can be solved in polynomial time for arbitrary omega-categorical structures Gamma if the input is restricted to instances of bounded treewidth. Finally, we characterize those omega-categorical templates whose CSP has Datalog width 1, and those whose CSP has strict Datalog width k.Comment: 28 pages. This is an extended long version of a conference paper that appeared at STACS'06. In the third version in the arxiv we have revised the presentation again and added a section that relates our results to formalizations of CSPs using relation algebra
    • …
    corecore