31,470 research outputs found

    Linked lives: the utility of an agent-based approach to modelling partnership and household formation in the context of social care

    Get PDF
    The UK’s population is aging, which presents a challenge as older people are the primary users of health and social care services. We present an agent-based model of the basic demographic processes that impinge on the supply of, and demand for, social care: namely mortality, fertility, health-status transitions, internal migration, and the formation and dissolution of partnerships and households. Agent-based modeling is used to capture the idea of “linked lives” and thus to represent hypotheses that are impossible to express in alternative formalisms. Simulation runs suggest that the per-taxpayer cost of state-funded social care could double over the next forty years. A key benefit of the approach is that we can treat the average cost of state-funded care as an outcome variable, and examine the projected effect of different sets of assumptions about the relevant social processes

    Anticipation and Risk – From the inverse problem to reverse computation

    Get PDF
    Abstract. Risk assessment is relevant only if it has predictive relevance. In this sense, the anticipatory perspective has yet to contribute to more adequate predictions. For purely physics-based phenomena, predictions are as good as the science describing such phenomena. For the dynamics of the living, the physics of the matter making up the living is only a partial description of their change over time. The space of possibilities is the missing component, complementary to physics and its associated predictions based on probabilistic methods. The inverse modeling problem, and moreover the reverse computation model guide anticipatory-based predictive methodologies. An experimental setting for the quantification of anticipation is advanced and structural measurement is suggested as a possible mathematics for anticipation-based risk assessment

    Role of Proteome Physical Chemistry in Cell Behavior.

    Get PDF
    We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells
    corecore