48 research outputs found

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers

    On the Relevance of Using Affordable Tools for White Spaces Identification

    Get PDF
    It is widely recognized that white spaces identification is an important milestone for the wide deployment of next generation cognitive wireless networks. However, spectrum holes detection tools used for white spaces discovery are still either in the infancy stage or too expensive to enable massive white spaces exploitation. Building upon cheap hardware equipment, this paper presents experiments conducted in the town of Trieste in Italy to sense the environment and find out which frequencies are not being used in a particular place and time-of-the-day. As a first step towards white spaces exploitation, we believe that our experimental frequency exploration is an important milestone upon which white spaces patterns recognition will be built with the aim of using these patterns in wireless network planning and management

    Efficient Identification and Utilization of Spectrum Opportunities in Cognitive Radio Networks.

    Full text link
    There has been an exponential increase in spectrum demands due to new emerging wireless services and applications, making it harder to find unallocated spectrum bands for future usage. This potential resource scarcity is rooted at inefficient utilization of spectrum under static spectrum allocation. Therefore, a new concept of dynamic spectrum access (DSA) has been proposed to opportunistically utilize the legacy spectrum bands by cognitive radio (CR) users. Cognitive radio is a key technology for alleviating this inefficient spectrum utilization, since it can help discover spectrum opportunities (or whitespaces) in which legacy spectrum users do not temporarily use their assigned spectrum bands. In a DSA network, it is crucial to efficiently identify and utilize the whitespaces. We address this issue by considering spectrum sensing and resource allocation. Spectrum sensing is to discover spectrum opportunities and to protect the legacy users (or incumbents) against harmful interference from the CR users. In particular, sensing is an interaction between PHY and MAC layers where in the PHY-layer signal detection is performed, and in the MAC-layer spectrum sensing is scheduled and spectrum sensors are coordinated for collaborative sensing. Specifically, we propose an efficient MAC-layer sensing scheduling algorithm that discovers spectrum opportunities as much as possible for better quality-of-service (QoS), and as fast as possible for seamless service provisioning. In addition, we propose an optimal in-band spectrum sensing algorithm to protect incumbents by achieving the detectability requirements set by regulators (e.g., FCC) while incurring minimal sensing overhead. For better utilization of discovered spectrum opportunities, we pay our attention to resource allocation in the secondary spectrum market where legacy license holders temporarily lease their own spectrum to secondary wireless service providers (WSPs) for opportunistic spectrum access by CR users. In this setting, we investigate how a secondary WSP can maximize its profit by optimally controlling the admission and eviction of its customers (i.e., CR users). In addition, we also focus on the price and quality competition between co-located WSPs where they contend for enticing customers by providing more competitive service fee while leasing the channels with best matching quality.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78741/1/hyoilkim_1.pd

    A comparative investigation on performance and which is the preferred methodology for spectrum management; geo-location spectrum database or spetrum sensing

    Get PDF
    A Research Report submitted to the Faculty of Engineering and the Built Environment, University of Witwatersrand, in the partial fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2015.Due to the enormous demand for multimedia services which relies hugely on the availability of spectrum, service providers and technologist are devising a means or method which is able to fully satisfy these growing demands. The availability of spectrum to meet these demands has been a lingering issue for the past couple of years. Many would have it tagged as spectrum scarcity but really the main problem is not how scarce the spectrum is but how efficiently allocated to use is the spectrum. Once such inefficiency is tackled effectively, then we are a step closer in meeting the enormous demands for uninterrupted services. However, to do so, there are techniques or methodologies being developed to aid in the efficient management of spectrum. In this research project, two methodologies were considered and the efficiency of these methodologies in the areas of spectrum management. The Geo-location Spectrum Database (GLSD) which is the most adopted technique and the Cognitive radio spectrum sensing technique are currently the available techniques in place. The TV whitespaces (TVWS) was explored using both techniques and certain comparison based on performances; implementation, practicability, cost and flexibility were used as an evaluation parameter in arriving at a conclusion. After accessing both methodologies, conclusions were deduced on the preferred methodology and how its use would efficiently solve the issues encountered in spectrum managemen

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    NS-2 based simulation framework for cognitive radio sensor networks

    Get PDF
    In this paper, we propose a simulation model for cognitive radio sensor networks (CRSNs) which is an attempt to combine the useful properties of wireless sensor networks and cognitive radio networks. The existing simulation models for cognitive radios cannot be extended for this purpose as they do not consider the strict energy constraint in wireless sensor networks. Our proposed model considers the limited energy available for wireless sensor nodes that constrain the spectrum sensing process—an unavoidable operation in cognitive radios. Our model has been thoroughly tested by performing experiments in different scenarios of CRSNs. The results generated by the model have been found accurate which can be considered for realization of CRSNs

    WhiteHaul: an efficient spectrum aggregation system for low-cost and high capacity backhaul over white spaces

    Get PDF
    We address the challenge of backhaul connectivity for rural and developing regions, which is essential for universal fixed/mobile Internet access. To this end, we propose to exploit the TV white space (TVWS) spectrum for its attractive properties: low cost, abundance in under-served regions and favorable propagation characteristics. Specifically, we propose a system called WhiteHaul for the efficient aggregation of the TVWS spectrum tailored for the backhaul use case. At the core of WhiteHaul are two key innovations: (i) a TVWS conversion substrate that can efficiently handle multiple non-contiguous chunks of TVWS spectrum using multiple low cost 802.11n/ac cards but with a single antenna; (ii) novel use of MPTCP as a link-level tunnel abstraction and its use for efficiently aggregating multiple chunks of the TVWS spectrum via a novel uncoupled, cross-layer congestion control algorithm. Through extensive evaluations using a prototype implementation of WhiteHaul, we show that: (a) WhiteHaul can aggregate almost the whole of TV band with 3 interfaces and achieve nearly 600Mbps TCP throughput; (b) the WhiteHaul MPTCP congestion control algorithm provides an order of magnitude improvement over state of the art algorithms for typical TVWS backhaul links. We also present additional measurement and simulation based results to evaluate other aspects of the WhiteHaul design
    corecore