20,075 research outputs found

    Evaluating the Impact of Critical Factors in Agile Continuous Delivery Process: A System Dynamics Approach

    Get PDF
    Continuous Delivery is aimed at the frequent delivery of good quality software in a speedy, reliable and efficient fashion – with strong emphasis on automation and team collaboration. However, even with this new paradigm, repeatability of project outcome is still not guaranteed: project performance varies due to the various interacting and inter-related factors in the Continuous Delivery 'system'. This paper presents results from the investigation of various factors, in particular agile practices, on the quality of the developed software in the Continuous Delivery process. Results show that customer involvement and the cognitive ability of the QA have the most significant individual effects on the quality of software in continuous delivery

    The impact of using pair programming on system evolution a simulation-based study

    Get PDF
    In this paper we investigate the impact of pair--programming on the long term evolution of software systems. We use system dynamics to build simulation models which predict the trend in system growth with and without pair programming. Initial results suggest that the extra effort needed for two people to code together may generate sufficient benefit to justify pair programming.Peer reviewe

    Constrained bayesian inference of project performance models

    Get PDF
    Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in environments where information about project constraints is available and can be exploited for improved project performance. We apply the methodology to probabilistic modelling of project S-curves, a graphical representation of a project’s cumulative progress. We show how the methodology could be used to improve confidence bounds on project performance predictions. We present results of a simulated process improvement project in agile setting to demonstrate our approach

    Chaste: a test-driven approach to software development for biological modelling

    Get PDF
    Chaste (‘Cancer, heart and soft-tissue environment’) is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence.\ud \ud Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    corecore