1,525 research outputs found

    Effective and efficient algorithm for multiobjective optimization of hydrologic models

    Get PDF
    Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    A test problem for visual investigation of high-dimensional multi-objective search

    Get PDF
    An inherent problem in multiobjective optimization is that the visual observation of solution vectors with four or more objectives is infeasible, which brings major difficulties for algorithmic design, examination, and development. This paper presents a test problem, called the Rectangle problem, to aid the visual investigation of high-dimensional multiobjective search. Key features of the Rectangle problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-variable decision space and 2) are similar (in the sense of Euclidean geometry) to their images in the four-dimensional objective space. In this case, it is easy to examine the behavior of objective vectors in terms of both convergence and diversity, by observing their proximity to the optimal rectangle and their distribution in the rectangle, respectively, in the decision space. Fifteen algorithms are investigated. Underperformance of Pareto-based algorithms as well as most state-of-the-art many-objective algorithms indicates that the proposed problem not only is a good tool to help visually understand the behavior of multiobjective search in a high-dimensional objective space but also can be used as a challenging benchmark function to test algorithms' ability in balancing the convergence and diversity of solutions

    Discovering Evolutionary Stepping Stones through Behavior Domination

    Full text link
    Behavior domination is proposed as a tool for understanding and harnessing the power of evolutionary systems to discover and exploit useful stepping stones. Novelty search has shown promise in overcoming deception by collecting diverse stepping stones, and several algorithms have been proposed that combine novelty with a more traditional fitness measure to refocus search and help novelty search scale to more complex domains. However, combinations of novelty and fitness do not necessarily preserve the stepping stone discovery that novelty search affords. In several existing methods, competition between solutions can lead to an unintended loss of diversity. Behavior domination defines a class of algorithms that avoid this problem, while inheriting theoretical guarantees from multiobjective optimization. Several existing algorithms are shown to be in this class, and a new algorithm is introduced based on fast non-dominated sorting. Experimental results show that this algorithm outperforms existing approaches in domains that contain useful stepping stones, and its advantage is sustained with scale. The conclusion is that behavior domination can help illuminate the complex dynamics of behavior-driven search, and can thus lead to the design of more scalable and robust algorithms.Comment: To Appear in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017

    Application of a new multi-agent Hybrid Co-evolution based Particle Swarm Optimisation methodology in ship design

    Get PDF
    In this paper, a multiple objective 'Hybrid Co-evolution based Particle Swarm Optimisation' methodology (HCPSO) is proposed. This methodology is able to handle multiple objective optimisation problems in the area of ship design, where the simultaneous optimisation of several conflicting objectives is considered. The proposed method is a hybrid technique that merges the features of co-evolution and Nash equilibrium with a ε-disturbance technique to eliminate the stagnation. The method also offers a way to identify an efficient set of Pareto (conflicting) designs and to select a preferred solution amongst these designs. The combination of co-evolution approach and Nash-optima contributes to HCPSO by utilising faster search and evolution characteristics. The design search is performed within a multi-agent design framework to facilitate distributed synchronous cooperation. The most widely used test functions from the formal literature of multiple objectives optimisation are utilised to test the HCPSO. In addition, a real case study, the internal subdivision problem of a ROPAX vessel, is provided to exemplify the applicability of the developed method

    Mutual benefits of two multicriteria analysis methodologies: A case study for batch plant design

    Get PDF
    This paper presents a MultiObjective Genetic Algorithm (MOGA) optimization framework for batch plant design. For this purpose, two approaches are implemented and compared with respect to three criteria, i.e., investment cost, equipment number and a flexibility indicator based on work in process (the so-called WIP) computed by use of a discrete-event simulation model. The first approach involves a genetic algorithm in order to generate acceptable solutions, from which the best ones are chosen by using a Pareto Sort algorithm. The second approach combines the previous Genetic Algorithm with a multicriteria analysis methodology, i.e., the Electre method in order to find the best solutions. The performances of the two procedures are studied for a large-size problem and a comparison between the procedures is then made

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM
    corecore