789 research outputs found

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Software Agents for facilitating collaboration among students in e-learning

    Full text link
    Computer supported collaborative learning (CSCL) is one promising technological means to support e-learning over the Internet. However, current CSCL systems work mostly in a passive fashion and do not attempt to take active control of the collaboration. In such systems, it is the responsibility of the participating students to organize and accomplish all the activities of collaborative learning (CL). Students get little assistance from the system during the CL, e.g. the composition of a CL group, the partition of a learning task, the combination of learning outcomes, etc. This paper seeks to actively help and guide students in the CL by software agents. The CSCL over the Internet is first investigated where some challenges for the students while they are taking part in the CL are highlighted. Based on the investigation, a multi-agent architecture to facilitate the CL is proposed. Then, the implementation in one particular CSCL system, LiveNet, is presented and the supports of the agents for the CL are explored. At the final are the conclusions of the paper and some outlooks

    Is Work System Theory a Practical Theory of Practice?

    Get PDF
    This paper describes an exploration of whether ideas related to pragmatism, practical theory, and practice theory provide potentially useful directions for extending work system theory (WST), which is an outgrowth of an attempt to develop the work system method (WSM), a flexible systems analysis method for business professionals. After summarizing WST’s basic premises and its two central frameworks, this paper uses a positioning map to explain reasons for considering relationships between WST and a number of topics related to practical issues and practice theory. Based on that positioning map, the subsequent sections discuss relation-ships between WST and UML, Goldkuhl’s workpractice theory, and the more general notion of practice theory. A concluding section briefly addresses a set of questions related to whether WST is a practical theory of practice. This paper\u27s comparisons of WST with the three theoret-ical perspectives for describing and understanding systems could be a step toward greater practical application of IS research related to the nature and evolution of activities, processes, routines, and practices involving the use of technology in organizational settings

    Enterprise architecture for small and medium-sized enterprises : CHOOSE

    Get PDF
    Enterprise architecture (EA) is a coherent whole of principles, methods, and models that are used in the design and realization of an enterprise’s organizational structure, business processes, information systems, and IT infrastructure. EA is used as a holistic approach to keep things aligned in a company. Some emphasize the use of EA to align IT with the business, others see it broader and use it to also keep the processes aligned with the strategy. Recent research indicates the need for EA in small and medium-sized enterprises (SMEs), important drivers of the economy, as they struggle with problems related to a lack of structure and overview of their business. However, existing EA frameworks are perceived as too complex and, to date, none of the EA approaches are sufficiently adapted to the SME context. Therefore, in this PhD, we present the CHOOSE approach for EA for SMEs. The approach consists of four artifacts: a metamodel, a method, software tool support, and a visualization. The approach is kept simple so that it may be applied in an SME context and is based on the essential dimensions of EA frameworks. Five steps were taken: first, the problem of EA in SMEs was extensively analyzed. Next, the CHOOSE metamodel was developed during action research in SMEs. Then, action research in six companies was used to develop an adequate method (consisting of guidelines, a roadmap, and stop criteria) and to further refine this CHOOSE metamodel, while different types of software tools (PC, iPad, Android, ...) were developed to enable the evaluation rounds. Finally, a proper visualization was established

    Pattern-based refactoring in model-driven engineering

    Full text link
    L’ingénierie dirigée par les modèles (IDM) est un paradigme du génie logiciel qui utilise les modèles comme concepts de premier ordre à partir desquels la validation, le code, les tests et la documentation sont dérivés. Ce paradigme met en jeu divers artefacts tels que les modèles, les méta-modèles ou les programmes de transformation des modèles. Dans un contexte industriel, ces artefacts sont de plus en plus complexes. En particulier, leur maintenance demande beaucoup de temps et de ressources. Afin de réduire la complexité des artefacts et le coût de leur maintenance, de nombreux chercheurs se sont intéressés au refactoring de ces artefacts pour améliorer leur qualité. Dans cette thèse, nous proposons d’étudier le refactoring dans l’IDM dans sa globalité, par son application à ces différents artefacts. Dans un premier temps, nous utilisons des patrons de conception spécifiques, comme une connaissance a priori, appliqués aux transformations de modèles comme un véhicule pour le refactoring. Nous procédons d’abord par une phase de détection des patrons de conception avec différentes formes et différents niveaux de complétude. Les occurrences détectées forment ainsi des opportunités de refactoring qui seront exploitées pour aboutir à des formes plus souhaitables et/ou plus complètes de ces patrons de conceptions. Dans le cas d’absence de connaissance a priori, comme les patrons de conception, nous proposons une approche basée sur la programmation génétique, pour apprendre des règles de transformations, capables de détecter des opportunités de refactoring et de les corriger. Comme alternative à la connaissance disponible a priori, l’approche utilise des exemples de paires d’artefacts d’avant et d’après le refactoring, pour ainsi apprendre les règles de refactoring. Nous illustrons cette approche sur le refactoring de modèles.Model-Driven Engineering (MDE) is a software engineering paradigm that uses models as first-class concepts from which validation, code, testing, and documentation are derived. This paradigm involves various artifacts such as models, meta-models, or model transformation programs. In an industrial context, these artifacts are increasingly complex. In particular, their maintenance is time and resources consuming. In order to reduce the complexity of artifacts and the cost of their maintenance, many researchers have been interested in refactoring these artifacts to improve their quality. In this thesis, we propose to study refactoring in MDE holistically, by its application to these different artifacts. First, we use specific design patterns, as an example of prior knowledge, applied to model transformations to enable refactoring. We first proceed with a detecting phase of design patterns, with different forms and levels of completeness. The detected occurrences thus form refactoring opportunities that will be exploited to implement more desirable and/or more complete forms of these design patterns. In the absence of prior knowledge, such as design patterns, we propose an approach based on genetic programming, to learn transformation rules, capable of detecting refactoring opportunities and correcting them. As an alternative to prior knowledge, our approach uses examples of pairs of artifacts before and after refactoring, in order to learn refactoring rules. We illustrate this approach on model refactoring

    A Value-Driven Framework for Software Architecture

    Get PDF
    Software that is not aligned with the business values of the organization for which it was developed does not entirely fulfill its raison d’etre. Business values represent what is important in a company, or organization, and should influence the overall software system behavior, contributing to the overall success of the organization. However, approaches to derive a software architecture considering the business values exchanged between an organization and its market players are lacking. Our quest is to address this problem and investigate how to derive value-centered architectural models systematically. We used the Technology Research method to address this PhD research question. This methodological approach proposes three steps: problem analysis, innovation, and validation. The problem analysis was performed using systematic studies of the literature to obtain full coverage on the main themes of this work, particularly, business value modeling, software architecture methods, and software architecture derivation methods. Next, the innovation step was accomplished by creating a framework for the derivation of a software reference architecture model considering an organization’s business values. The resulting framework is composed of three core modules: Business Value Modeling, Agile Reference Architecture Modeling, and Goal-Driven SOA Architecture Modeling. While the Business value modeling module focuses on building a stakeholder-centric business specification, the Agile Reference Architecture Modeling and the Goal-Driven SOA Architecture Modeling modules concentrate on generating a software reference architecture aligned with the business value specification. Finally, the validation part of our framework is achieved through proof-of-concept prototypes for three new domain specific languages, case studies, and quasi-experiments, including a family of controlled experiments. The findings from our research show that the complexity and lack of rigor in the existing approaches to represent business values can be addressed by an early requirements specification method that represents the value exchanges of a business. Also, by using sophisticated model-driven engineering techniques (e.g., metamodels, model transformations, and model transformation languages), it was possible to obtain source generators to derive a software architecture model based on early requirements value models, while assuring traceability throughout the architectural derivation process. In conclusion, despite using sophisticated techniques, the derivation process of a software reference architecture is helped by simple to use methods supported by black box transformations and guidelines that facilitate the activities for the less experienced software architects. The experimental validation process used confirmed that our framework is feasible and perceived as easy to use and useful, also indicating that the participants of the experiments intend to use it in the future

    Model-Driven Methodology for Rapid Deployment of Smart Spaces based on Resource-Oriented Architectures

    Get PDF
    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym

    Model analytics and management

    Get PDF
    • …
    corecore