3,789 research outputs found

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    A Component-Based Approach for Securing Indoor Home Care Applications

    Get PDF
    eHealth systems have adopted recent advances on sensing technologies together with advances in information and communication technologies (ICT) in order to provide people-centered services that improve the quality of life of an increasingly elderly population. As these eHealth services are founded on the acquisition and processing of sensitive data (e.g., personal details, diagnosis, treatments and medical history), any security threat would damage the public's confidence in them. This paper proposes a solution for the design and runtime management of indoor eHealth applications with security requirements. The proposal allows applications definition customized to patient particularities, including the early detection of health deterioration and suitable reaction (events) as well as security needs. At runtime, security support is twofold. A secured component-based platform supervises applications execution and provides events management, whilst the security of the communications among application components is also guaranteed. Additionally, the proposed event management scheme adopts the fog computing paradigm to enable local event related data storage and processing, thus saving communication bandwidth when communicating with the cloud. As a proof of concept, this proposal has been validated through the monitoring of the health status in diabetic patients at a nursing home.This work was financed under project DPI2015-68602-R (MINECO/FEDER, UE), UPV/EHU under project PPG17/56 and GV/EJ under recognized research group IT914-16

    Fault Tolerance Framework for Composite Web Services

    Get PDF
    A composite Web service combines multiple, logically interrelated services for creating more common services meeting complex requirements from users. The services participating in a composition coordinate the actions of distributed activity using Web services protocols to reach consistent agreement on the outcome of joint operation. However, as services run over unreliable protocols, there is a great chance that services fail due to the failure of protocols. However, current protocol standards provide fault-tolerance but are limited to backward recovery using expensive compensation and roll-back strategies. This paper gives an extension of the existing Web services business activity (WS-BA) protocol to deal with failures using forward recovery approach. A set of common failure types affecting the execution of component services is identified, and recovery solutions for each identified failure are also presented. The fault-handling extension of the WS-BA protocol implements recovery solutions for each of the identified failures to handle failures at runtime. Another important aspect about which the WS-BA protocol specification is unclear is reaching and notifying consistent outcome on the completion of joint work. This study extends the WS-BA protocol to notify consistent outcome reached by all participating services. The implementation and testing of the framework are performed using the model-checking and verification tool UPPAAL. A well-known application example supports the study. The key properties of the framework, like the execution of corresponding recovery actions in cases of failures and reaching a consistent agreement on the outcome of joint operation, are verified

    Using embedded hardware monitor cores in critical computer systems

    Get PDF
    The integration of FPGA devices in many different architectures and services makes monitoring and real time detection of errors an important concern in FPGA system design. A monitor is a tool, or a set of tools, that facilitate analytic measurements in observing a given system. The goal of these observations is usually the performance analysis and optimisation, or the surveillance of the system. However, System-on-Chip (SoC) based designs leave few points to attach external tools such as logic analysers. Thus, an embedded error detection core that allows observation of critical system nodes (such as processor cores and buses) should enforce the operation of the FPGA-based system, in order to prevent system failures. The core should not interfere with system performance and must ensure timely detection of errors. This thesis is an investigation onto how a robust hardware-monitoring module can be efficiently integrated in a target PCI board (with FPGA-based application processing features) which is part of a critical computing system. [Continues.

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio
    • 

    corecore