67,678 research outputs found

    Bearing-Based Distributed Control and Estimation of Multi-Agent Systems

    Full text link
    This paper studies the distributed control and estimation of multi-agent systems based on bearing information. In particular, we consider two problems: (i) the distributed control of bearing-constrained formations using relative position measurements and (ii) the distributed localization of sensor networks using bearing measurements. Both of the two problems are considered in arbitrary dimensional spaces. The analyses of the two problems rely on the recently developed bearing rigidity theory. We show that the two problems have the same mathematical formulation and can be solved by identical protocols. The proposed controller and estimator can globally solve the two problems without ambiguity. The results are supported with illustrative simulations.Comment: 6 pages, to appear in the 2015 European Control Conferenc

    V-like formations in flocks of artificial birds

    Full text link
    We consider flocks of artificial birds and study the emergence of V-like formations during flight. We introduce a small set of fully distributed positioning rules to guide the birds' movements and demonstrate, by means of simulations, that they tend to lead to stabilization into several of the well-known V-like formations that have been observed in nature. We also provide quantitative indicators that we believe are closely related to achieving V-like formations, and study their behavior over a large set of independent simulations

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Measuring autonomy and emergence via Granger causality

    Get PDF
    Concepts of emergence and autonomy are central to artificial life and related cognitive and behavioral sciences. However, quantitative and easy-to-apply measures of these phenomena are mostly lacking. Here, I describe quantitative and practicable measures for both autonomy and emergence, based on the framework of multivariate autoregression and specifically Granger causality. G-autonomy measures the extent to which the knowing the past of a variable helps predict its future, as compared to predictions based on past states of external (environmental) variables. G-emergence measures the extent to which a process is both dependent upon and autonomous from its underlying causal factors. These measures are validated by application to agent-based models of predation (for autonomy) and flocking (for emergence). In the former, evolutionary adaptation enhances autonomy; the latter model illustrates not only emergence but also downward causation. I end with a discussion of relations among autonomy, emergence, and consciousness

    Methodological considerations of integrating portable digital technologies in the analysis and management of complex superimposed Californian pictographs: From spectroscopy and spectral imaging to 3-D scanning

    Get PDF
    How can the utilization of newly developed advanced portable technologies give us greater understandings of the most complex of prehistoric rock art? This is the questions driving The Gordian Knot project analysing the polychrome Californian site known as Pleito. New small transportable devices allow detailed on-site analyses of rock art. These non-destructive portable technologies can use X-ray and Raman technology to determine the chemical elements used to make the pigment that makes the painting; they can use imaging techniques such as Highlight Reflective Transformation Imaging and dStretch© to enhance their visibility; they can use digital imagery to disentangle complex superimposed paintings; and they can use portable laser instruments to analyse the micro-topography of the rock surface and integrate these technologies into a 3-D environment. This paper outlines a robust methodology and preliminary results to show how an integration of different portable technologies can serve rock art research and management

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex
    corecore