1,784 research outputs found

    Model Driven Evolution of an Agent-Based Home Energy Management System

    Get PDF
    Advanced smart home appliances and new models of energy tariffs imposed by energy providers pose new challenges in the automation of home energy management. Users need some assistant tool that helps them to make complex decisions with different goals, depending on the current situation. Multi-agent systems have proved to be a suitable technology to develop self-management systems, able to take the most adequate decision under different context-dependent situations, like the home energy management. The heterogeneity of home appliances and also the changes in the energy policies of providers introduce the necessity of explicitly modeling this variability. But, multi-agent systems lack of mechanisms to effectively deal with the different degrees of variability required by these kinds of systems. Software Product Line technologies, including variability models, has been successfully applied to different domains to explicitly model any kind of variability. We have defined a software product line development process that performs a model driven generation of agents embedded in heterogeneous smart objects with different degrees of self-management. However, once deployed, the home energy assistant system has to be able to evolve to self-adapt its decision making or devices to new requirements. So, in this paper we propose a model driven mechanism to automatically manage the evolution of multi-agent systems distributed among several devices.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Engineering Agent Systems for Decision Support

    Get PDF
    This paper discusses how agent technology can be applied to the design of advanced Information Systems for Decision Support. In particular, it describes the different steps and models that are necessary to engineer Decision Support Systems based on a multiagent architecture. The approach is illustrated by a case study in the traffic management domain

    Multiagent-Based Model For ESCM

    Get PDF
    Web based applications for Supply Chain Management (SCM) are now a necessity for every company in order to meet the increasing customer demands, to face the global competition and to make profit. Multiagent-based approach is appropriate for eSCM because it shows many of the characteristics a SCM system should have. For this reason, we have proposed a multiagent-based eSCM model which configures a virtual SC, automates the SC activities: selling, purchasing, manufacturing, planning, inventory, etc. This model will allow a better coordination of the supply chain network and will increase the effectiveness of Web and intel-ligent technologies employed in eSCM software

    Automated post-fault diagnosis of power system disturbances

    Get PDF
    In order to automate the analysis of SCADA and digital fault recorder (DFR) data for a transmission network operator in the UK, the authors have developed an industrial strength multi-agent system entitled protection engineering diagnostic agents (PEDA). The PEDA system integrates a number of legacy intelligent systems for analyzing power system data as autonomous intelligent agents. The integration achieved through multi-agent systems technology enhances the diagnostic support offered to engineers by focusing the analysis on the most pertinent DFR data based on the results of the analysis of SCADA. Since November 2004 the PEDA system has been operating online at a UK utility. In this paper the authors focus on the underlying intelligent system techniques, i.e. rule-based expert systems, model-based reasoning and state-of-the-art multi-agent system technology, that PEDA employs and the lessons learnt through its deployment and online use

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented
    • 

    corecore