490,462 research outputs found

    A Comparison of Different Topic Modeling Methods through a Real Case Study of Italian Customer Care

    Get PDF
    The paper deals with the analysis of conversation transcriptions between customers and agents in a call center of a customer care service. The objective is to support the analysis of text transcription of human-to-human conversations, to obtain reports on customer problems and complaints, and on the way an agent has solved them. The aim is to provide customer care service with a high level of efficiency and user satisfaction. To this aim, topic modeling is considered since it facilitates insightful analysis from large documents and datasets, such as a summarization of the main topics and topic characteristics. This paper presents a performance comparison of four topic modeling algorithms: (i) Latent Dirichlet Allocation (LDA); (ii) Non-negative Matrix Factorization (NMF); (iii) Neural-ProdLDA (Neural LDA) and Contextualized Topic Models (CTM). The comparison study is based on a database containing real conversation transcriptions in Italian Natural Language. Experimental results and different topic evaluation metrics are analyzed in this paper to determine the most suitable model for the case study. The gained knowledge can be exploited by practitioners to identify the optimal strategy and to perform and evaluate topic modeling on Italian natural language transcriptions of human-to-human conversations. This work can be an asset for grounding applications of topic modeling and can be inspiring for similar case studies in the domain of customer care quality

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    What to bid and when to stop

    No full text
    Negotiation is an important activity in human society, and is studied by various disciplines, ranging from economics and game theory, to electronic commerce, social psychology, and artificial intelligence. Traditionally, negotiation is a necessary, but also time-consuming and expensive activity. Therefore, in the last decades there has been a large interest in the automation of negotiation, for example in the setting of e-commerce. This interest is fueled by the promise of automated agents eventually being able to negotiate on behalf of human negotiators.Every year, automated negotiation agents are improving in various ways, and there is now a large body of negotiation strategies available, all with their unique strengths and weaknesses. For example, some agents are able to predict the opponent's preferences very well, while others focus more on having a sophisticated bidding strategy. The problem however, is that there is little incremental improvement in agent design, as the agents are tested in varying negotiation settings, using a diverse set of performance measures. This makes it very difficult to meaningfully compare the agents, let alone their underlying techniques. As a result, we lack a reliable way to pinpoint the most effective components in a negotiating agent.There are two major advantages of distinguishing between the different components of a negotiating agent's strategy: first, it allows the study of the behavior and performance of the components in isolation. For example, it becomes possible to compare the preference learning component of all agents, and to identify the best among them. Second, we can proceed to mix and match different components to create new negotiation strategies., e.g.: replacing the preference learning technique of an agent and then examining whether this makes a difference. Such a procedure enables us to combine the individual components to systematically explore the space of possible negotiation strategies.To develop a compositional approach to evaluate and combine the components, we identify structure in most agent designs by introducing the BOA architecture, in which we can develop and integrate the different components of a negotiating agent. We identify three main components of a general negotiation strategy; namely a bidding strategy (B), possibly an opponent model (O), and an acceptance strategy (A). The bidding strategy considers what concessions it deems appropriate given its own preferences, and takes the opponent into account by using an opponent model. The acceptance strategy decides whether offers proposed by the opponent should be accepted.The BOA architecture is integrated into a generic negotiation environment called Genius, which is a software environment for designing and evaluating negotiation strategies. To explore the negotiation strategy space of the negotiation research community, we amend the Genius repository with various existing agents and scenarios from literature. Additionally, we organize a yearly international negotiation competition (ANAC) to harvest even more strategies and scenarios. ANAC also acts as an evaluation tool for negotiation strategies, and encourages the design of negotiation strategies and scenarios.We re-implement agents from literature and ANAC and decouple them to fit into the BOA architecture without introducing any changes in their behavior. For each of the three components, we manage to find and analyze the best ones for specific cases, as described below. We show that the BOA framework leads to significant improvements in agent design by wining ANAC 2013, which had 19 participating teams from 8 international institutions, with an agent that is designed using the BOA framework and is informed by a preliminary analysis of the different components.In every negotiation, one of the negotiating parties must accept an offer to reach an agreement. Therefore, it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When contemplating whether to accept an offer, the agent is faced with the acceptance dilemma: accepting the offer may be suboptimal, as better offers may still be presented before time runs out. On the other hand, accepting too late may prevent an agreement from being reached, resulting in a break off with no gain for either party. We classify and compare state-of-the-art generic acceptance conditions. We propose new acceptance strategies and we demonstrate that they outperform the other conditions. We also provide insight into why some conditions work better than others and investigate correlations between the properties of the negotiation scenario and the efficacy of acceptance conditions.Later, we adopt a more principled approach by applying optimal stopping theory to calculate the optimal decision on the acceptance of an offer. We approach the decision of whether to accept as a sequential decision problem, by modeling the bids received as a stochastic process. We determine the optimal acceptance policies for particular opponent classes and we present an approach to estimate the expected range of offers when the type of opponent is unknown. We show that the proposed approach is able to find the optimal time to accept, and improves upon all existing acceptance strategies.Another principal component of a negotiating agent's strategy is its ability to take the opponent's preferences into account. The quality of an opponent model can be measured in two different ways. One is to use the agent's performance as a benchmark for the model's quality. We evaluate and compare the performance of a selection of state-of-the-art opponent modeling techniques in negotiation. We provide an overview of the factors influencing the quality of a model and we analyze how the performance of opponent models depends on the negotiation setting. We identify a class of simple and surprisingly effective opponent modeling techniques that did not receive much previous attention in literature.The other way to measure the quality of an opponent model is to directly evaluate its accuracy by using similarity measures. We review all methods to measure the accuracy of an opponent model and we then analyze how changes in accuracy translate into performance differences. Moreover, we pinpoint the best predictors for good performance. This leads to new insights concerning how to construct an opponent model, and what we need to measure when optimizing performance.Finally, we take two different approaches to gain more insight into effective bidding strategies. We present a new classification method for negotiation strategies, based on their pattern of concession making against different kinds of opponents. We apply this technique to classify some well-known negotiating strategies, and we formulate guidelines on how agents should bid in order to be successful, which gives insight into the bidding strategy space of negotiating agents. Furthermore, we apply optimal stopping theory again, this time to find the concessions that maximize utility for the bidder against particular opponents. We show there is an interesting connection between optimal bidding and optimal acceptance strategies, in the sense that they are mirrored versions of each other.Lastly, after analyzing all components separately, we put the pieces back together again. We take all BOA components accumulated so far, including the best ones, and combine them all together to explore the space of negotiation strategies.We compute the contribution of each component to the overall negotiation result, and we study the interaction between components. We find that combining the best agent components indeed makes the strongest agents. This shows that the component-based view of the BOA architecture not only provides a useful basis for developing negotiating agents but also provides a useful analytical tool. By varying the BOA components we are able to demonstrate the contribution of each component to the negotiation result, and thus analyze the significance of each. The bidding strategy is by far the most important to consider, followed by the acceptance conditions and finally followed by the opponent model.Our results validate the analytical approach of the BOA framework to first optimize the individual components, and then to recombine them into a negotiating agent

    Skill Rating by Bayesian Inference

    Get PDF
    Systems Engineering often involves computer modelling the behaviour of proposed systems and their components. Where a component is human, fallibility must be modelled by a stochastic agent. The identification of a model of decision-making over quantifiable options is investigated using the game-domain of Chess. Bayesian methods are used to infer the distribution of players’ skill levels from the moves they play rather than from their competitive results. The approach is used on large sets of games by players across a broad FIDE Elo range, and is in principle applicable to any scenario where high-value decisions are being made under pressure

    An integrative model of the management of hospital physician relationships

    Get PDF
    Hospital Physician Relationships (HPRs) are of major importance to the health care sector. Drawing on agency theory and social exchange theory, we argue that both economic and noneconomic integration strategies are important to effective management of HPRs. We developed a model of related antecedents and outcomes and conducted a systematic review to assess the evidence base of both integration strategies and their interplay. We found that more emphasis should be placed on financial risk sharing, trust and physician organizational commitment

    Network Structure, Efficiency, and Performance in WikiProjects

    Full text link
    The internet has enabled collaborations at a scale never before possible, but the best practices for organizing such large collaborations are still not clear. Wikipedia is a visible and successful example of such a collaboration which might offer insight into what makes large-scale, decentralized collaborations successful. We analyze the relationship between the structural properties of WikiProject coeditor networks and the performance and efficiency of those projects. We confirm the existence of an overall performance-efficiency trade-off, while observing that some projects are higher than others in both performance and efficiency, suggesting the existence factors correlating positively with both. Namely, we find an association between low-degree coeditor networks and both high performance and high efficiency. We also confirm results seen in previous numerical and small-scale lab studies: higher performance with less skewed node distributions, and higher performance with shorter path lengths. We use agent-based models to explore possible mechanisms for degree-dependent performance and efficiency. We present a novel local-majority learning strategy designed to satisfy properties of real-world collaborations. The local-majority strategy as well as a localized conformity-based strategy both show degree-dependent performance and efficiency, but in opposite directions, suggesting that these factors depend on both network structure and learning strategy. Our results suggest possible benefits to decentralized collaborations made of smaller, more tightly-knit teams, and that these benefits may be modulated by the particular learning strategies in use.Comment: 11 pages, 5 figures, to appear in ICWSM 201
    • …
    corecore