6 research outputs found

    Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    Get PDF
    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability

    Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration

    Get PDF
    In the recent past, mobile robots played an important role in the field of extraterrestrial surface exploration. Unfortunately, the currently available space exploration rovers do not provide the necessary mobility to reach scientifically interesting places in rough and steep terrain like boulder fields and craters. Multi-legged robots have proven to be a good solution to provide high mobility in unstructured environments. However, space missions place high demands on the system design, control, and performance which are hard to fulfill with such kinematically complex systems. This thesis focuses on the development, control, and evaluation of a six-legged robot for the purpose of lunar crater exploration considering the requirements arising from the envisaged mission scenario. The performance of the developed system is evaluated and optimized based on empirical data acquired in significant and reproducible experiments performed in a laboratory environment in order to show thecapability of the system to perform such a task and to provide a basis for the comparability with other mobile robotic solutions

    Suspension effect in tip-over stability and steerability of robots moving on terrain discontinuities

    Full text link
    [ES] En este artículo se estudia el efecto que produce el sistema de suspensión sobre la estabilidad al vuelco y la capacidad de direccionamiento en un robot móvil Skid Steer, cuando este se enfrenta a distintas discontinuidades del terreno: descenso (frontal y lateral) y ascenso sobre escalones, además del desplazamiento sobre zanjas. Específicamente, se estudió el instante cuando se generan cargas de impacto producto del movimiento del robot sobre la irregularidad del terreno. En cada caso se hizo un análisis correlacional del efecto sobre la estabilidad al vuelco y el direccionamiento (cuantificadas con métricas fundamentadas en las fuerzas de reacción de las ruedas con el suelo), al variar cuatro parámetros que definen el sistema de suspensión: constante de rigidez en los resortes, constante de amortiguamiento en los amortiguadores y las constantes de rigidez y amortiguamiento en las ruedas. Por último se estimó para cada caso, qué magnitudes deberían adquirir estos parámetros para garantizar una mejor estabilidad y direccionamiento del robot.[EN] This article studies the effect produced by the suspension system in tip-over stability and steerability of a Skid Steer mobile robot, when it faces different terrain discontinuities: descent (front and side) and ascent on steps, plus displacement over ditches. Specifically, the moment was studied when impact loads producted by the robot's movement on the irregularity of the terrain are generated. In each case, a correlational analysis was made about the effect in tip-over stability and steerability (quantified with metrics based on the reaction forces of the wheels with the ground), by varying four parameters that define the suspension system: stiffness constant in the springs, damping constant in the dampers and the stiffness and damping constants in the wheels. Finally, it was estimated for each case, what magnitudes these parameters should acquire to ensure better stability and steerability of robot.Este trabajo ha sido realizado parcialmente gracias al apoyo del Decanato de Investigación de la Universidad Nacional Experimental del Táchira bajo los proyectos 01-025-2016 y 01-008-2018.García, JM.; Valero, A.; Bohórquez, A. (2020). Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. Revista Iberoamericana de Automática e Informática industrial. 17(2):202-214. https://doi.org/10.4995/riai.2020.12308OJS202214172Abo-Shanab, R., & Sepehri, N., 2005. Tip-over stability of manipulator-like mobile hydraulic machines. Journal of Dynamic Systems, Measurement and Control , 127 (2), 295-301. https://doi.org/10.1115/1.1898239Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., y otros., 2010. An active suspension system for lunar crew mobility. IEEE Aerospace Conference, (págs. 1-9). Big Sky. https://doi.org/10.1109/AERO.2010.5446895Bruzzone, L., Fanghella, P., & Quaglia, G., 2017. Experimental performance assessment of mantis 2, hybrid leg-wheel mobile robot. International Journal of Automation Technology , 11 (3), 396-403. https://doi.org/10.20965/ijat.2017.p0396Chen, S., Li, X., Zhou, J., Wu, W., Yuan, S., & Liu, S., 2017. Modelling the vertical dynamics of unmanned ground vehicle with rocker suspension. Proceedings of IEEE International Conference on Mechatronics and Automation, (págs. 370-375). Takamatsu. https://doi.org/10.1109/ICMA.2017.8015845Chokor, A., Talj, R., Charara, A., Shraim, H., & Francis, C., 2016. Active suspension control to improve passengers comfort and vehicle's stability. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), (págs. 296-301). Rio de Janeiro. https://doi.org/10.1109/ITSC.2016.7795570Cordes, F., Kirchner, F., & Babu, A., 2018. Design and field testing of a rover with an actively articulated suspension system in a Mars analog terrain. Journal of Field Robotics , 35 (7), 1149-1181. https://doi.org/10.1002/rob.21808Cordos, N., & Todorut, A., 2019. Influences of the suspensions characteristics on the vehicle stability. En N. Burnete, & B. Varga (Ed.), Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018) (págs. 808-813). Cham: Springer. https://doi.org/10.1007/978-3-319-94409-8_94Deremetz, M., Lenain, R., & Thuilot, B., 2017. tiffness and damping real-time control algorithms for adjustable suspensions : A strategy to reduce dynamical effects on vehicles in off-road conditions. IFAC-PapersOnLine , 50 (1), 1958-1964. https://doi.org/10.1016/j.ifacol.2017.08.1565Ellery, A., 2016. Rover mobility and locomotion. En Planetary Rovers, Springer Praxis Books (págs. 71-132). Berlin: Springer, Heidelberg. https://doi.org/10.1007/978-3-642-03259-2_4Funde, J., Wani, K., Dhote, N., & Patil, S., 2019. Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection. En U. Chandrasekhar, L. Yang, & S. Gowthaman (Ed.). (págs. 1-15). Singapure: Springer. https://doi.org/10.1007/978-981-13-2697-4_1García, J. M., Gil, A., & Sánchez, E. (2018). Desarrollo de una arquitectura de software para el robot móvil Lázaro. Ingeniare , 26 (3), 376-390. https://doi.org/10.4067/S0718-33052018000300376García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2017b. Caster-leg aided maneuver for negotiating surface discontinuities with a wheeled skid-steer mobile robot. Robotics and Autonomous Systems , 91, 25-37. https://doi.org/10.1016/j.robot.2016.12.007García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2015b. Steerability analysis on slopes of a mobile robot with a ground contact arm. Proc. 23rd Mediterranean Conference on Control and Automation, (págs. 267-272). Torremolinos, Spain. https://doi.org/10.1109/MED.2015.7158761García, J. M., Medina, I., Cerezo, A. G., & Linares, A., 2015a. Improving the static stability of a mobile manipulator using its end effector in contact with the ground. IEEE Latin American Transactions , 13 (10), 3228-3234. https://doi.org/10.1109/TLA.2015.7387226García, J., Medina, I., Martínez, J., García-Cerezo, A., Linares, A., & Porras, C., 2017a. Lázaro: robot móvil dotado de brazo para contacto con el suelo. Revista Iberoamericana de Automática e Informática industrial , 14 (1), 174-183. https://doi.org/10.1016/j.riai.2016.09.012Goga, V., & Kl'úcik, M., 2012. Optimization of vehicle suspension parameters with use of evolutionary computation. Procedia Engineering , 48, 174-179. https://doi.org/10.1016/j.proeng.2012.09.502Hurel, J., Mandow, A., & García-Cerezo, A., 2013. Los sistemas de suspensión activa y semiactiva: una revisión. Revista iberoamericana de automática e informática , 10 (2), 121-132. https://doi.org/10.1016/j.riai.2013.03.002Kang, S., Lee, W., Kim, M., & Shin, K., 2005. Robhaz-rescue: Rough-terrain negotiable teleoperated mobile robot for rescue mission. IEEE International Workshop on Safety, Security and Rescue Robotics, (págs. 105-110). Kobe.Lei, X., Zhang, G., Li, S., Qian, H., & Xu, Y., 2017. Dual-spring AGV shock absorption system design: Dynamic analysis and simulations. IEEE International Conference on Robotics and Biomimetics (ROBIO), (págs. 1-7). Macau. https://doi.org/10.1109/ROBIO.2017.8324559Li, B., Ma, S., Liu, J., Wang, M., Liu, T., & Wang, Y., 2009. Amoeba-I: a shape-shifting modular robot for urban search and rescue. Advanced Robotics , 23 (9), 1057-1083. https://doi.org/10.1163/156855309X452485Liu, Y., Meng, X., & Zhang, M., 2008. Research on mobile manipulator tip-over stability and compensation. 8th WSEAS International Conference on Robotics, control and Manufacturing Technology, (págs. 114-120). Hangzhou.Luo, Z., Shang, J., Wei, G., & Ren, L., 2018. Module-based structure design of wheeled mobile robot. Mechanical Sciences , 9 (1), 103-121. https://doi.org/10.5194/ms-9-103-2018Mihon, L., & Lontiș, N., 2019. Modeling and analysis of a vehicle suspension. En N. Burnete, & B. Varga (Ed.), Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018), (págs. 113-121). https://doi.org/10.1007/978-3-319-94409-8_14Moosavian, A., Alipour, K., & Bahramzadeh, Y., 2007. Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms. IEEE/RSJ International Conference on Intelligent Robots and Systems, (págs. 1210-1215). San Diego. https://doi.org/10.1109/IROS.2007.4398999Reid, W., Pérez-Grau, F., Göktogan, A., & Sukkarieh, S., 2016. Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface. IEEE International Conference on Robotics and Automation (ICRA), (págs. 5596-5602). Stockholm. https://doi.org/10.1109/ICRA.2016.7487777Sert, E., & Boyraz, P., 2017. Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle. Engineering Science and Technology, an International Journal , 20, 997-1012. https://doi.org/10.1016/j.jestch.2017.03.007Suresh, A., Ajithkumar, N., Kalathil, S., Simon, A., Unnikrishnan, V., Mathew, D., y otros., 2017. An advanced spider-like rocker-bogie suspension system for mars exploration rovers. En J. Kim, F. Karray, P. Sincak, & G. Myung (Ed.), Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing. 447, págs. 423-447. Springer. https://doi.org/10.1007/978-3-319-31293-4_34Yang, L., Cai, B., Zhang, R., Li, K., & Wang, R., 2018. A new type design of lunar rover suspension structure and its neural network control system. Journal of Intelligent & Fuzzy Systems , 35 (1), 269-281. https://doi.org/10.3233/JIFS-169586Zhang, J., Jia, X., Zhao, Z., & Gao, R., 2015. Optimization of Positioning Parameters for McPherson Front Suspension based on ADAMS/Car. International Conference on Computer Science and Mechanical Automation (CSMA), (págs. 297-301). Hangzhou. https://doi.org/10.1109/CSMA.2015.66Zhang, S., Zhao, X., Su, W., Wu, H., Dai, Z., & Chen, Z., 2019. The design of suspension mechanism and analysis of obstacle ability to rescue robots. En K. Deng, Z. Yu, S. Patnaik, & J. Wang (Ed.), Recent Developments in Mechatronics and Intelligent Robotics. ICMIR 2018. Advances in Intelligent Systems and Computing. 856, págs. 677-685. Cham: Springer. https://doi.org/10.1007/978-3-030-00214-5_8

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Proceedings of the 40th Aerospace Mechanisms Symposium

    Get PDF
    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 40th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 40th AMS, hosted by the Kennedy Space Center (KSC) in Cocoa Beach, Florida, was held May 12, 13 and 14, 2010. During these three days, 38 papers were presented. Topics included gimbals and positioning mechanisms, CubeSats, actuators, Mars rovers, and Space Station mechanisms. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administratio

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore