600 research outputs found

    Electric Waterborne Public Transportation in Venice: a Case Study

    Get PDF
    The paper reports the results of a study for moving the present diesel-based watercraft propulsion technology used for public transportation in Venice city and lagoon to a more efficient and smart electric propulsion technology, in view of its adopted in a near future. Energy generation and storage systems, electrical machines and drives, as well as economic, environmental and social issues are presented and discussed. Some alternative solutions based on hybrid diesel engine and electric and full electric powertrains are compared in terms of weights, costs and payback times. Previews researches on ship propulsion and electric energy storage developed by the University of Padua and preliminary experiences on electric boats carried out in Venice lagoon by the municipal transportation company ACTV and other stakeholders are the starting point for this study. Results can be transferred to other waterborne mobility systems

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    Paving the way to electrified road transport - Publicly funded research, development and demonstration projects on electric and plug-in vehicles in Europe

    Get PDF
    The electrification of road transport or electro-mobility is seen by many as a potential game-changing technology that could have a significant influence on the future cost and environmental performance of personal individual mobility as well as short distance goods transport. While there is currently a great momentum vis-Ă -vis electro-mobility, it is yet unclear, if its deployment is economically viable in the medium to long term. Electromobility, in its early phase of deployment, still faces significant hurdles that need to be overcome in order to reach a greater market presence. Further progress is needed to overcome some of these hurdles. The importance of regulatory and financial support to emerging environmentally friendly transport technologies has been stressed in multiple occasions. The aim of our study was to collect the information on all on-going or recently concluded research, development and demonstration projects on electric and plug-in hybrid electric vehicles, which received EU or national public funding with a budget >1mln Euro, in order to assess which of the electric drive vehicles (EDV) challenges are addressed by these projects and to identify potential gaps in the research, development, and demonstration (R, D & D) landscape in Europe. The data on R, D & D projects on electric and plug-in vehicles, which receive public funding, has been collected by means of (i) on-line research, (ii) validation of an inventory of projects at member state level through national contacts and (iii) validation of specific project information through distribution of project information templates among project coordinators. The type of information which was gathered for the database included: EDV component(s) targeted for R&D, location and scope of demo projects, short project descriptions, project budget and amount of public co-funding received, funding organisation, project coordinator,number and type of partners (i.e. utilities, OEMs, services, research institutions, local authorities), start and duration of the project. The validation process permitted the identification of additional projects which were not accounted for in the original online search. Statistical elaboration of the collected data was conducted. More than 320 R, D & D projects funded by the EU and Member states are listed and analyzed. Their total budgets add up to approximately 1.9 billion Euros. Collected data allowed also the development of an interactive emobility visualization tool, called EV-Radar, which portrays in an interactive way R&D and demonstration efforts for EDVs in Europe. It can be accessed under http://iet.jrc.ec.europa.eu/ev-radar.JRC.F.6-Energy systems evaluatio

    Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort

    Get PDF
    Assessing the potential of advanced driver assistance systems requires developing dedicated control algorithms for controlling the longitudinal speed of automated vehicles over time. In this paper, a multiobjective off-line optimal control approach for planning the speed of the following vehicle in adaptive cruise control (ACC) driving is proposed. The implemented method relies on the principle of global optimality fostered by dynamic programming (DP) and aims to minimize propelling energy consumption and enhance passenger comfort. The powertrain model and onboard control system are integrated within the proposed car-following optimization framework. The retained ACC approach ensures that the distance between the following vehicle and the preceding vehicle is always maintained within allowed limits. The flexibility of the proposed method is demonstrated here through ease of implementation on a wide range of powertrain categories, including a conventional vehicle propelled by an internal combustion engine solely, a pure electric vehicle, a parallel P2 hybrid electric vehicle (HEV) and a power-split HEV. Moreover, different driving conditions are considered to prove the effectiveness of the proposed optimization-driven ACC approach. Obtained simulation results suggest that up to 22% energy-saving and 48% passenger comfort improvement might be achieved for the ACC-enabled vehicle compared with the preceding vehicle by implementing the proposed optimization-driven ACC approach. Engineers may adopt the proposed workflow to evaluate corresponding real-time ACC approaches and assess optimal powertrain design solutions for ACC driving

    A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework

    Get PDF
    This paper proposes a novel control framework and the corresponding strategy for power sources management in connected plug-in hybrid electric vehicles (cPHEVs). A mobile edge computation (MEC) based control framework is developed first, evolving the conventional on-board vehicle control unit (VCU) into the hierarchically asynchronous controller that is partly located in cloud. Elaborately contrastive analysis on the performance of processing capacity, communication frequency and communication delay manifests dramatic potential of the proposed framework in sustaining development of the cooperative control strategy for cPHEVs. On the basis of MEC based control framework, a specific cooperative strategy is constructed. The novel strategy accomplishes energy flow management between different power sources with incorporation of the active energy consumption plan and adaptive energy consumption management. The method to generate the reference battery state-of-charge (SOC) trajectories in energy consumption plan stage is emphatically investigated, fast outputting reference trajectories that are tightly close to results by global optimization methods. The estimation of distribution algorithm (EDA) is employed to output reference control policies under the specific terminal conditions assigned via the machine learning based method. Finally, simulation results highlight that the novel strategy attains superior performance in real-time application that is close to the offline global optimization solutions

    A Study on the Integration of a High-Speed Flywheel as an Energy Storage Device in Hybrid Vehicles

    Get PDF
    The last couple of decades have seen the rise of the hybrid electric vehicle as a compromise between the outstanding specific energy of petrol fuels and its low-cost technology, and the zero tail-gate emissions of the electric vehicle. Despite this, considerable reductions in cost and further increases in fuel economy are needed for their widespread adoption. An alternative low-cost energy storage technology for vehicles is the high-speed flywheel. The flywheel has important limitations that exclude it from being used as a primary energy source for vehicles, but its power characteristics and low-cost materials make it a powerful complement to a vehicle's primary propulsion system. This thesis presents an analysis on the integration of a high-speed flywheel for use as a secondary energy storage device in hybrid vehicles. Unlike other energy storage technologies, the energy content of the flywheel has a direct impact on the velocity of transmission. This presents an important challenge, as it means that the flywheel must be able to rotate at a speed independent of the vehicle's velocity and therefore it must be coupled via a variable speed transmission. This thesis presents some practical ways in which to accomplish this in conventional road vehicles, namely with the use of a variator, a planetary gear set or with the use of a power-split continuously variable transmission. Fundamental analyses on the kinematic behaviour of these transmissions particularly as they pertain to flywheel powertrains are presented. Computer simulations were carried out to compare the performance of various transmissions, and the models developed are presented as well. Finally the thesis also contains an investigation on the driving and road conditions that have the most beneficial effect on hybrid vehicle performance, with a particular emphasis on the effect that the road topography has on fuel economy and the significance of this

    Modeling the impact of battery degradation within lifecycle cost based design optimization of heavy-duty hybrid electric vehicles

    Get PDF
    The optimal design of hybrid electric vehicle (HEV) powertrains from a systems perspective is critical to realize the maximum benefits for a given application. This is particularly true in the heavy-duty vehicle space where the major challenges are: (i) greater emphasis on economic viability, (ii) reluctance to take on risk associated with new technologies, and (iii) numerous diverse applications that preclude a one-size-fits-all approach to hybrid-electric powertrain design. Past studies on HEV powertrain design have either ignored battery degradation, or failed to holistically capture its impact from a lifecycle cost perspective. The focus of this effort is the development of a model-based framework that enables parametric optimization of the design and control of hybrid electric vehicles while accounting for the degradation of the lithium-ion battery and its impact on the total cost-of-ownership of the vehicle. Two different implementations of such a framework are described. The first implementation explores a very high-fidelity approach to enable engineering design optimization across a small parameter space. It captures the impact of battery degradation on fuel consumption and battery replacements over the vehicle life by incorporating a high-fidelity electrochemical battery model capable of predicting degradation, and degraded performance, into the powertrain simulation. An electric motor and battery size optimization problem is studied for a parallel HEV transit bus application. Results show that different optimal component sizes are obtained when different optimization objectives, such as net present value, payback period, internal rate of return, or simply the day 1 fuel consumption, are considered. Accounting for the battery degradation in the powertrain simulations shows fuel consumption increasing by up to 10% from day 1 to end-of-life of the battery. These results highlight the utility of the proposed implementation in enabling better design decisions as compared to methods that do not capture the evolution of vehicle performance and fuel consumption as the battery degrades. However, the high-fidelity electrochemical battery degradation model and the interval-by-interval simulation approach used in this implementation are computationally too expensive for a large-scale design study. In contrast, the second implementation uses a simpler empirical battery model to enable a large-scale study over a 10-parameter design space, over multiple architectures and vehicle applications. This implementation is designed to aid heavy-duty vehicle and powertrain component manufacturers in identifying market opportunities and planning future products. The design space explored in this work includes three powertrain component sizing parameters, four control strategy parameters and three vehicle uncertainty parameters. Multiple drive cycles were simulated across the Class 5-7 medium-duty truck and Class 7-8 transit bus applications for both parallel and series plug-in hybrid electric vehicle (PHEV) powertrain architectures with charge depleting and charge sustaining modes of operation. These simulation results were then evaluated for real-world economic viability under different economic assumptions corresponding to the 2015, 2020, 2025 and 2030 time frames. Sensitivity of the economic viability of solutions was also studied with respect to the vehicle uncertainty parameters, economic assumptions and vehicle utilization assumptions. (Abstract shortened by ProQuest.

    Future Transportation

    Get PDF
    Greenhouse gas (GHG) emissions associated with transportation activities account for approximately 20 percent of all carbon dioxide (co2) emissions globally, making the transportation sector a major contributor to the current global warming. This book focuses on the latest advances in technologies aiming at the sustainable future transportation of people and goods. A reduction in burning fossil fuel and technological transitions are the main approaches toward sustainable future transportation. Particular attention is given to automobile technological transitions, bike sharing systems, supply chain digitalization, and transport performance monitoring and optimization, among others
    • …
    corecore