11,296 research outputs found

    Cyber physical approach and framework for micro devices assembly

    Get PDF
    The emergence of Cyber Physical Systems (CPS) and Internet-of-Things (IoT) based principles and technologies holds the potential to facilitate global collaboration in various fields of engineering. Micro Devices Assembly (MDA) is an emerging domain involving the assembly of micron sized objects and devices. In this dissertation, the focus of the research is the design of a Cyber Physical approach for the assembly of micro devices. A collaborative framework comprising of cyber and physical components linked using the Internet has been developed to accomplish a targeted set of MDA life cycle activities which include assembly planning, path planning, Virtual Reality (VR) based assembly analysis, command generation and physical assembly. Genetic algorithm and modified insertion algorithm based methods have been proposed to support assembly planning activities. Advanced VR based environments have been designed to support assembly analysis where plans can be proposed, compared and validated. The potential of next generation Global Environment for Network Innovation (GENI) networking technologies has also been explored to support distributed collaborations involving VR-based environments. The feasibility of the cyber physical approach has been demonstrated by implementing the cyber physical components which collaborate to assemble micro designs. The case studies conducted underscore the ability of the developed Cyber Physical approach and framework to support distributed collaborative activities for MDA process contexts

    Cyber-Physical Systems for Micro-/Nano-assembly Operations: a Survey

    Get PDF
    Abstract Purpose of Review Latest requirements of the global market force manufacturing systems to a change for a new production paradigm (Industry 4.0). Cyber-Physical Systems (CPS) appear as a solution to be deployed in different manufacturing fields, especially those with high added value and technological complexity, high product variants, and short time to market. In this sense, this paper aims at reviewing the introduction level of CPS technologies in micro/nano-manufacturing and how these technologies could cope with these challenging manufacturing requirements. Recent Findings The introduction of CPS is still in its infancy on many industrial applications, but it actually demonstrates its potential to support future manufacturing paradigm. However, only few research works in micro/nano-manufacturing considered CPS frameworks, since the concept barely appeared a decade ago. Summary Some contributions have revealed the potential of CPS technologies to improve manufacturing performance which may be scaled to the micro/nano-manufacturing. IoT-based frameworks with VR/AR technologies allow distributed and collaborative systems, or agent-based architectures with advance algorithm implementations that improve the flexibility and performance of micro-/nano-assembly operations. Future research of CPS in micro-/nano-assembly operations should be followed by more studies of its technical deployment showing its implications under other perspectives, i.e. sustainable, economic, and social point of views, to take full advance of all its features

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Industry 4.0—from Smart Factory to Cognitive Cyberphysical Production System and Cloud Manufacturing

    Get PDF
    This book focuses on recent developments in new industrial platforms, with Industry 4.0 on its way to becoming Industry 5.0. The book covers smart decision support systems for green and sustainable machining, microscale machining, cyber-physical production networks, and the optimization of assembly lines. The modern multiobjective algorithms and multicriteria decision-making methods are applied to various real-world industrial problems. The emerging problem of cybersecurity in advanced technologies is addressed as well

    The Applications of Additive Manufacturing Technologies in Cyber-Enabled Manufacturing Systems

    Get PDF
    The application of networked sensors and control in various areas, such as smart grids and infrastructures, has become a recent trend, called cyber-physical systems. The Cyber Enabled Manufacturing (CEM) environment is to apply these technologies in manufacturing systems to handle a significantly greater magnitude of manufacturing data. Additive manufacturing techniques print or place material layer by layer to form a part, thus have a great potential to help accelerate CEM process by printing or embedding sensors and actuators in the proper locations. This paper summarizes the roles of additive manufacturing technologies to help establish a CEM environment.Mechanical Engineerin

    Cybersecurity for Manufacturers: Securing the Digitized and Connected Factory

    Full text link
    As manufacturing becomes increasingly digitized and data-driven, manufacturers will find themselves at serious risk. Although there has yet to be a major successful cyberattack on a U.S. manufacturing operation, threats continue to rise. The complexities of multi-organizational dependencies and data-management in modern supply chains mean that vulnerabilities are multiplying. There is widespread agreement among manufacturers, government agencies, cybersecurity firms, and leading academic computer science departments that U.S. industrial firms are doing too little to address these looming challenges. Unfortunately, manufacturers in general do not see themselves to be at particular risk. This lack of recognition of the threat may represent the greatest risk of cybersecurity failure for manufacturers. Public and private stakeholders must act before a significant attack on U.S. manufacturers provides a wake-up call. Cybersecurity for the manufacturing supply chain is a particularly serious need. Manufacturing supply chains are connected, integrated, and interdependent; security of the entire supply chain depends on security at the local factory level. Increasing digitization in manufacturing— especially with the rise of Digital Manufacturing, Smart Manufacturing, the Smart Factory, and Industry 4.0, combined with broader market trends such as the Internet of Things (IoT)— exponentially increases connectedness. At the same time, the diversity of manufacturers—from large, sophisticated corporations to small job shops—creates weakest-link vulnerabilities that can be addressed most effectively by public-private partnerships. Experts consulted in the development of this report called for more holistic thinking in industrial cybersecurity: improvements to technologies, management practices, workforce training, and learning processes that span units and supply chains. Solving the emerging security challenges will require commitment to continuous improvement, as well as investments in research and development (R&D) and threat-awareness initiatives. This holistic thinking should be applied across interoperating units and supply chains.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/145442/1/MForesight_CybersecurityReport_Web.pd

    Life Cycle Engineering 4.0: A Proposal to Conceive Manufacturing Systems for Industry 4.0 Centred on the Human Factor (DfHFinI4.0)

    Get PDF
    Engineering 4.0 environments are characterised by the digitisation, virtualisation, and connectivity of products, processes, and facilities composed of reconfigurable and adaptive socio-technical cyber-physical manufacturing systems (SCMS), in which Operator 4.0 works in real time in VUCA (volatile, uncertain, complex and ambiguous) contexts and markets. This situation gives rise to the interest in developing a framework for the conception of SCMS that allows the integration of the human factor, management, training, and development of the competencies of Operator 4.0 as fundamental aspects of the aforementioned system. The present paper is focused on answering how to conceive the adaptive manufacturing systems of Industry 4.0 through the operation, growth, and development of human talent in VUCA contexts. With this objective, exploratory research is carried, out whose contribution is specified in a framework called Design for the Human Factor in Industry 4.0 (DfHFinI4.0). From among the conceptual frameworks employed therein, the connectivist paradigm, Ashby's law of requisite variety and Vigotsky's activity theory are taken into consideration, in order to enable the affective-cognitive and timeless integration of the human factor within the SCMS. DfHFinI4.0 can be integrated into the life cycle engineering of the enterprise reference architectures, thereby obtaining manufacturing systems for Industry 4.0 focused on the human factor. The suggested framework is illustrated as a case study for the Purdue Enterprise Reference Architecture (PERA) methodology, which transforms it into PERA 4.0

    Cyber-physical systems (CPS) in supply chain management: From foundations to practical implementation

    Get PDF
    Since 2015 developments such as Industry 4.0 and cyber-physical production systems on the technology side, and approaches such as flexible and smart manufacturing systems hold great potential. These in turn give rise to special requirements that the production planning, control and monitoring, among others, needing a paradigm shift to exploit the full potential of these methods and techniques. Starting from foundations in Cyber Physical Systems (CPS), building upon definitions and findings reported by literature, a practical example of innovative Cyber Physical Supply Chain Planning System (CPS2) is provided. The paper clarifies the advantages of cyber-physical systems in the production planning, controlling and monitoring perspective with respect to manufacturing, logistics and related planning practices. A set of basic features of CPS2 systems are discussed and addressed by contextualizing service orientation architecture and microservices components with respect to supply chain management collaboration and cooperation practices. The identification of specific technologies behind those functions, within the developed research, provides some practical insight if the interesting CPS2 potential
    corecore