54 research outputs found

    Multi-Dimensional Codebooks for Multiple Access Schemes

    Get PDF
    The sparse code multiple access (SCMA) scheme directly maps the incoming bits of several sources (users/streams) to complex multi-dimensional codewords selected from a specific predefined sparse codebook set. The codewords of all sources are then superimposed and exchanged. The shaping gain of the multi-dimensional constellation of SCMA leads to a better system performance. The decoder’s objective will be to separate the superimposed sparse codewords. Most existing works on SCMA decoders employ message passing algorithm (MPA) or one of its variations, or a combination of MPA and other methods. The system architecture is highlighted and its basic principles are presented. Then, an overview of main multi-dimensional constellations for SCMA systems will be provided. Afterwards, we will focus on how the SCMA codebooks are decoded and how their performance is evaluated and compared

    Massive Unsourced Random Access: Exploiting Angular Domain Sparsity

    Get PDF
    This paper investigates the unsourced random access (URA) scheme to accommodate numerous machine-type users communicating to a base station equipped with multiple antennas. Existing works adopt a slotted transmission strategy to reduce system complexity; they operate under the framework of coupled compressed sensing (CCS) which concatenates an outer tree code to an inner compressed sensing code for slot-wise message stitching. We suggest that by exploiting the MIMO channel information in the angular domain, redundancies required by the tree encoder/decoder in CCS can be removed to improve spectral efficiency, thereby an uncoupled transmission protocol is devised. To perform activity detection and channel estimation, we propose an expectation-maximization-aided generalized approximate message passing algorithm with a Markov random field support structure, which captures the inherent clustered sparsity structure of the angular domain channel. Then, message reconstruction in the form of a clustering decoder is performed by recognizing slot-distributed channels of each active user based on similarity. We put forward the slot-balanced K-means algorithm as the kernel of the clustering decoder, resolving constraints and collisions specific to the application scene. Extensive simulations reveal that the proposed scheme achieves a better error performance at high spectral efficiency compared to the CCS-based URA schemes

    Enhancing Signal Space Diversity for SCMA Over Rayleigh Fading Channels

    Get PDF
    Sparse code multiple access (SCMA) is a promising technique for the enabling of massive connectivity in future machine-type communication networks, but it suffers from a limited diversity order which is a bottleneck for significant improvement of error performance. This paper aims for enhancing the signal space diversity of sparse code multiple access (SCMA) by introducing quadrature component delay to the transmitted codeword of a downlink SCMA system in Rayleigh fading channels. Such a system is called SSD-SCMA throughout this work. By looking into the average mutual information (AMI) and the pairwise error probability (PEP) of the proposed SSD-SCMA, we develop novel codebooks by maximizing the derived AMI lower bound and a modified minimum product distance (MMPD), respectively. The intrinsic asymptotic relationship between the AMI lower bound and proposed MMPD based codebook designs is revealed. Numerical results show significant error performance improvement in the both uncoded and coded SSD-SCMA systems

    A Tutorial on Decoding Techniques of Sparse Code Multiple Access

    Get PDF
    Sparse Code Multiple Access (SCMA) is a disruptive code-domain non-orthogonal multiple access (NOMA) scheme to enable future massive machine-type communication networks. As an evolved variant of code division multiple access (CDMA), multiple users in SCMA are separated by assigning distinctive sparse codebooks (CBs). Efficient multiuser detection is carried out at the receiver by employing the message passing algorithm (MPA) that exploits the sparsity of CBs to achieve error performance approaching to that of the maximum likelihood receiver. In spite of numerous research efforts in recent years, a comprehensive one-stop tutorial of SCMA covering the background, the basic principles, and new advances, is still missing, to the best of our knowledge. To fill this gap and to stimulate more forthcoming research, we provide a holistic introduction to the principles of SCMA encoding, CB design, and MPA based decoding in a self-contained manner. As an ambitious paper aiming to push the limits of SCMA, we present a survey of advanced decoding techniques with brief algorithmic descriptions as well as several promising directions

    Numerical Studies of Superconductivity and Charge-Density-Waves: Progress on the 2D Holstein Model and a Superconductor-Metal Bilayer

    Get PDF
    The problem of superconductivity has been central in many areas of condensed matter physics for over 100 years. Despite this long history, there is still no theory capable of describing both conventional and unconventional superconductors. Recent experimental observations such as the dilute superconductivity in SrTiO3 and near room-temperature superconductivity in hydride compounds under extreme pressure have renewed interest in electron-phonon systems. Adding to this is evidence that electron-phonon coupling may play a supporting role in unconventional systems like the cuprates and monolayer FeSe on SrTiO3. One way to make sense of these observations is to construct simple models that capture the essential physics. Among the models with electron-phonon interactions, the simplest and most studied is the two-dimensional Holstein model. It describes a single band of electrons that hop between sites on a square lattice and interact with atomic oscillators by coupling linearly to their displacements. This model gives rise to superconductivity and charge-density-wave order spanning different regions of doping. Surprisingly, even this model is not entirely understood. First, we present a comprehensive study of the Holstein model phase diagram using self-consistent many-body perturbation theory. We then discuss one potential avenue for accelerating non-perturbative quantum Monte Carlo simulations of electron-phonon models using artificial neural networks. Following these topics, we wrap up the electron-phonon-related part by discussing the importance of nonlinear interaction terms and moving beyond the Holstein model. The last problem of this dissertation revisits a proposal by Steve Kivelson. He hypothesized and later showed that coupling a superconductor with a large pairing scale but low phase stiffness to a metal raises the transition temperature (Tc). Expanding on previous work, we studied a more general case with a 2D negative-U Hubbard model coupled with a metallic layer via single-particle tunneling. Here, we use the dynamical cluster approximation to estimate Tc, finding it is maximal for finite tunneling values, thereby confirming Kivelson’s hypothesis in the general case. Collectively, the results in this dissertation shed new light on superconductivity in conventional systems and demonstrate a need to incorporate more aspects of real materials into models

    Hybrid generalized non-orthogonal multiple access for the 5G wireless networks.

    Get PDF
    Master of Science in Computer Engineering. University of KwaZulu-Natal. Durban, 2018.The deployment of 5G networks will lead to an increase in capacity, spectral efficiency, low latency and massive connectivity for wireless networks. They will still face the challenges of resource and power optimization, increasing spectrum efficiency and energy optimization, among others. Furthermore, the standardized technologies to mitigate against the challenges need to be developed and are a challenge themselves. In the current predecessor LTE-A networks, orthogonal frequency multiple access (OFDMA) scheme is used as the baseline multiple access scheme. It allows users to be served orthogonally in either time or frequency to alleviate narrowband interference and impulse noise. Further spectrum limitations of orthogonal multiple access (OMA) schemes have resulted in the development of non-orthogonal multiple access (NOMA) schemes to enable 5G networks to achieve high spectral efficiency and high data rates. NOMA schemes unorthogonally co-multiplex different users on the same resource elements (RE) (i.e. time-frequency domain, OFDMA subcarrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter and successfully separating them at the receiver by applying multi-user detection (MUD) algorithms. The current developed NOMA schemes, refered to as generalized-NOMA (G-NOMA) technologies includes; Interleaver Division Multiple Access (IDMA, Sparse code multiple access (SCMA), Low-density spreading multiple access (LDSMA), Multi-user shared access (MUSA) scheme and the Pattern Division Multiple Access (PDMA). These protocols are currently still under refinement, their performance and applicability has not been thoroughly investigated. The first part of this work undertakes a thorough investigation and analysis of the performance of the existing G-NOMA schemes and their applicability. Generally, G-NOMA schemes perceives overloading by non-orthogonal spectrum resource allocation, which enables massive connectivity of users and devices, and offers improved system spectral efficiency. Like any other technologies, the G-NOMA schemes need to be improved to further harvest their benefits on 5G networks leading to the requirement of Hybrid G-NOMA (G-NOMA) schemes. The second part of this work develops a HG-NOMA scheme to alleviate the 5G challenges of resource allocation, inter and cross-tier interference management and energy efficiency. This work develops and investigates the performance of an Energy Efficient HG-NOMA resource allocation scheme for a two-tier heterogeneous network that alleviates the cross-tier interference and improves the system throughput via spectrum resource optimization. By considering the combinatorial problem of resource pattern assignment and power allocation, the HG-NOMA scheme will enable a new transmission policy that allows more than two macro-user equipment’s (MUEs) and femto-user equipment’s (FUEs) to be co-multiplexed on the same time-frequency RE increasing the spectral efficiency. The performance of the developed model is shown to be superior to the PD-NOMA and OFDMA schemes
    • …
    corecore