2,250 research outputs found

    Novel gradient-based methods for data distribution and privacy in data science

    Get PDF
    With an increase in the need of storing data at different locations, designing algorithms that can analyze distributed data is becoming more important. In this thesis, we present several gradient-based algorithms, which are customized for data distribution and privacy. First, we propose a provably convergent, second order incremental and inherently parallel algorithm. The proposed algorithm works with distributed data. By using a local quadratic approximation, we achieve to speed-up the convergence with the help of curvature information. We also illustrate that the parallel implementation of our algorithm performs better than a parallel stochastic gradient descent method to solve a large-scale data science problem. This first algorithm solves the problem of using data that resides at different locations. However, this setting is not necessarily enough for data privacy. To guarantee the privacy of the data, we propose differentially private optimization algorithms in the second part of the thesis. The first one among them employs a smoothing approach which is based on using the weighted averages of the history of gradients. This approach helps to decrease the variance of the noise. This reduction in the variance is important for iterative optimization algorithms, since increasing the amount of noise in the algorithm can harm the performance. We also present differentially private version of a recent multistage accelerated algorithm. These extensions use noise related parameter selection and the proposed stepsizes are proportional to the variance of the noisy gradient. The numerical experiments show that our algorithms show a better performance than some well-known differentially private algorithm

    On the Convergence of Deep Learning with Differential Privacy

    Full text link
    In deep learning with differential privacy (DP), the neural network achieves the privacy usually at the cost of slower convergence (and thus lower performance) than its non-private counterpart. This work gives the first convergence analysis of the DP deep learning, through the lens of training dynamics and the neural tangent kernel (NTK). Our convergence theory successfully characterizes the effects of two key components in the DP training: the per-sample clipping (flat or layerwise) and the noise addition. Our analysis not only initiates a general principled framework to understand the DP deep learning with any network architecture and loss function, but also motivates a new clipping method -- the global clipping, that significantly improves the convergence while preserving the same privacy guarantee as the existing local clipping. In terms of theoretical results, we establish the precise connection between the per-sample clipping and NTK matrix. We show that in the gradient flow, i.e., with infinitesimal learning rate, the noise level of DP optimizers does not affect the convergence. We prove that DP gradient descent (GD) with global clipping guarantees the monotone convergence to zero loss, which can be violated by the existing DP-GD with local clipping. Notably, our analysis framework easily extends to other optimizers, e.g., DP-Adam. Empirically speaking, DP optimizers equipped with global clipping perform strongly on a wide range of classification and regression tasks. In particular, our global clipping is surprisingly effective at learning calibrated classifiers, in contrast to the existing DP classifiers which are oftentimes over-confident and unreliable. Implementation-wise, the new clipping can be realized by adding one line of code into the Opacus library

    Robust federated learning with noisy communication

    Get PDF
    Federated learning is a communication-efficient training process that alternate between local training at the edge devices and averaging of the updated local model at the center server. Nevertheless, it is impractical to achieve perfect acquisition of the local models in wireless communication due to the noise, which also brings serious effect on federated learning. To tackle this challenge in this paper, we propose a robust design for federated learning to decline the effect of noise. Considering the noise in two aforementioned steps, we first formulate the training problem as a parallel optimization for each node under the expectation-based model and worst-case model. Due to the non-convexity of the problem, regularizer approximation method is proposed to make it tractable. Regarding the worst-case model, we utilize the sampling-based successive convex approximation algorithm to develop a feasible training scheme to tackle the unavailable maxima or minima noise condition and the non-convex issue of the objective function. Furthermore, the convergence rates of both new designs are analyzed from a theoretical point of view. Finally, the improvement of prediction accuracy and the reduction of loss function value are demonstrated via simulation for the proposed designs

    Privacy-Preserving Distributed Processing Over Networks

    Get PDF
    corecore