426 research outputs found

    Biosignal and context monitoring: Distributed multimedia applications of body area networks in healthcare

    Get PDF
    We are investigating the use of Body Area Networks (BANs), wearable sensors and wireless communications for measuring, processing, transmission, interpretation and display of biosignals. The goal is to provide telemonitoring and teletreatment services for patients. The remote health professional can view a multimedia display which includes graphical and numerical representation of patients’ biosignals. Addition of feedback-control enables teletreatment services; teletreatment can be delivered to the patient via multiple modalities including tactile, text, auditory and visual. We describe the health BAN and a generic mobile health service platform and two context aware applications. The epilepsy application illustrates processing and interpretation of multi-source, multimedia BAN data. The chronic pain application illustrates multi-modal feedback and treatment, with patients able to view their own biosignals on their handheld device

    On environments as systemic exoskeletons: Crosscutting optimizers and antifragility enablers

    Full text link
    Classic approaches to General Systems Theory often adopt an individual perspective and a limited number of systemic classes. As a result, those classes include a wide number and variety of systems that result equivalent to each other. This paper introduces a different approach: First, systems belonging to a same class are further differentiated according to five major general characteristics. This introduces a "horizontal dimension" to system classification. A second component of our approach considers systems as nested compositional hierarchies of other sub-systems. The resulting "vertical dimension" further specializes the systemic classes and makes it easier to assess similarities and differences regarding properties such as resilience, performance, and quality-of-experience. Our approach is exemplified by considering a telemonitoring system designed in the framework of Flemish project "Little Sister". We show how our approach makes it possible to design intelligent environments able to closely follow a system's horizontal and vertical organization and to artificially augment its features by serving as crosscutting optimizers and as enablers of antifragile behaviors.Comment: Accepted for publication in the Journal of Reliable Intelligent Environments. Extends conference papers [10,12,15]. The final publication is available at Springer via http://dx.doi.org/10.1007/s40860-015-0006-

    The Application of Image Recognition and Machine Learning to Capture Readings of Traditional Blood Pressure Devices: A Platform to Promote Population Health Management to Prevent Cardiovascular Diseases

    Get PDF
    Digital solutions for Blood Pressure Monitoring (or Telemonitoring) have sprouted in recent years, innovative solutions are often connected to the Internet of Things (IoT), with mobile health (mHealth) platform. However, clinical validity, technology cost and cross-platform data integration remain as the major barriers for the application of these solutions. In this paper, we present an IoT-based and AI-embedded Blood Pressure Telemonitoring (BPT) system, which facilitates home blood pressure monitoring for individuals. The highlights of this system are the machine learning techniques to enable automatic digits recognition, with F1 score of 98.5%; and the cloud-based portal developed for automated data synchronization and risk stratification. Positive feedbacks on trial implementation are received from three clinics. The overall system architecture, development of machine learning model in digit identification and cloud-based telemonitoring are addressed in this paper, alongside the followed implications

    Antepartum Fetal Monitoring through a Wearable System and a Mobile Application

    Get PDF
    Prenatal monitoring of Fetal Heart Rate (FHR) is crucial for the prevention of fetal pathologies and unfavorable deliveries. However, the most commonly used Cardiotocographic exam can be performed only in hospital-like structures and requires the supervision of expert personnel. For this reason, a wearable system able to continuously monitor FHR would be a noticeable step towards a personalized and remote pregnancy care. Thanks to textile electrodes, miniaturized electronics, and smart devices like smartphones and tablets, we developed a wearable integrated system for everyday fetal monitoring during the last weeks of pregnancy. Pregnant women at home can use it without the need for any external support by clinicians. The transmission of FHR to a specialized medical center allows its remote analysis, exploiting advanced algorithms running on high-performance hardware able to obtain the best classification of the fetal condition. The system has been tested on a limited set of pregnant women whose fetal electrocardiogram recordings were acquired and classified, yielding an overall score for both accuracy and sensitivity over 90%. This novel approach can open a new perspective on the continuous monitoring of fetus development by enhancing the performance of regular examinations, making treatments really personalized, and reducing hospitalization or ambulatory visits. Keywords: tele-monitoring; wearable devices; fetal heart rate; telemedicin

    Holistic System Design for Distributed National eHealth Services

    Get PDF
    publishedVersio

    Strategic Intelligence Monitor on Personal Health Systems (SIMPHS): Report on Typology/Segmentation of the PHS Market

    Get PDF
    This market segmentation reports for Personal Health Systems (PHS) describes the methodological background and illustrates the principles of classification and typology regarding different fragments forming this market. It discusses different aspects of the market for PHS and highlights challenges towards a stringent and clear-cut typology or defining market segmentation. Based on these findings a preliminary hybrid typology and indications and insights are created in order to be used in the continuation of the SIMPHS project. It concludes with an annex containing examples and cases studies.JRC.DDG.J.4-Information Societ
    • 

    corecore