579 research outputs found

    Research on railway track edge detection based on BM3D and Zernike moments

    Get PDF
    With the rapid development of intelligent rail transportation, the realization of intelligent detection of railroad foreign body intrusion has become an important topic of current research. Accurate detection of rail edge location, and then delineate the danger area is the premise and basis for railroad track foreign object intrusion detection. The application of a single edge detection algorithm in the process of rail identification is likely to cause the problem of missing important edges and weak gradient change edges of railroad tracks. It will affect the subsequent detection of track foreign objects. A combined global and local edge detection method is proposed to detect the edges of railroad tracks. In the global pixel-level edge detection, an improved blok-matching and 3D filtering (BM3D) algorithm combined with bilateral filtering is used for denoising to eliminate the interference information in the complex environment. Then the gradient direction is added to the Canny operator, the computational template is increased to achieve non-extreme value suppression, and the Otsu thresholding segmentation algorithm is used for thresholding improvement. It can effectively suppress noise while preserving image details, and improve the accuracy and efficiency of detection at the pixel level. For local subpixel-level edge detection, the improved Zernike moment algorithm is used to extract the edges of the obtained pixel-level images and obtain the corresponding subpixel-level images. It can enhance the extraction of tiny feature edges, effectively reduce the computational effort and obtain the subpixel edges of the orbit images. The experimental results show that compared with other improved algorithms, the method proposed in this paper can effectively extract the track edges of the detected images with higher accuracy, better preserve the track edge features, reduce the appearance of pseudo-edges, and shorten the edge detection time with certain noise immunity, which provides a reliable basis for subsequent track detection and analysis

    Anomaly Detection Based on Multiple Streams Clustering for Train Real-Time Ethernet

    Get PDF
    With the increasing traffic of train communication network (TCN), real-time Ethernet becomes the development trend. However, Train Control and Management System (TCMS) is inevitably faced with more security threats than before because of the openness of Ethernet communication protocol. It is necessary to introduce effective security mechanism into TCN. Therefore, we propose a train real-time Ethernet anomaly detection system (TREADS). TREADS introduces a multiple streams clustering algorithm to realize anomaly detection, which considers the correlation between the data dimensions and adopts the decay window to pay more attention to the recent data. In the experiment, the reliability of TREADS is tested based on the TRDP data set collected from the real network environment, and the models of anomaly detection algorithms are established for evaluation. Experimental results show that TREADS can provide a high reliability guarantee, besides, the algorithm can detect and analyze network anomalies more efficiently and accurately

    Contents

    Get PDF

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    A deep learning approach towards railway safety risk assessment

    Get PDF
    Railway stations are essential aspects of railway systems, and they play a vital role in public daily life. Various types of AI technology have been utilised in many fields to ensure the safety of people and their assets. In this paper, we propose a novel framework that uses computer vision and pattern recognition to perform risk management in railway systems in which a convolutional neural network (CNN) is applied as a supervised machine learning model to identify risks. However, risk management in railway stations is challenging because stations feature dynamic and complex conditions. Despite extensive efforts by industry associations and researchers to reduce the number of accidents and injuries in this field, such incidents still occur. The proposed model offers a beneficial method for obtaining more accurate motion data, and it detects adverse conditions as soon as possible by capturing fall, slip and trip (FST) events in the stations that represent high-risk outcomes. The framework of the presented method is generalisable to a wide range of locations and to additional types of risks

    A Survey on Audio-Video based Defect Detection through Deep Learning in Railway Maintenance

    Get PDF
    Within Artificial Intelligence, Deep Learning (DL) represents a paradigm that has been showing unprecedented performance in image and audio processing by supporting or even replacing humans in defect and anomaly detection. The Railway sector is expected to benefit from DL applications, especially in predictive maintenance applications, where smart audio and video sensors can be leveraged yet kept distinct from safety-critical functions. Such separation is crucial, as it allows for improving system dependability with no impact on its safety certification. This is further supported by the development of DL in other transportation domains, such as automotive and avionics, opening for knowledge transfer opportunities and highlighting the potential of such a paradigm in railways. In order to summarize the recent state-of-the-art while inquiring about future opportunities, this paper reviews DL approaches for the analysis of data generated by acoustic and visual sensors in railway maintenance applications that have been published until August 31st, 2021. In this paper, the current state of the research is investigated and evaluated using a structured and systematic method, in order to highlight promising approaches and successful applications, as well as to identify available datasets, current limitations, open issues, challenges, and recommendations about future research directions

    A review on intelligent monitoring and activity interpretation

    Get PDF
    This survey paper provides a tour of the various monitoring and activity interpretation frameworks found in the literature. The needs of monitoring and interpretation systems are presented in relation to the area where they have been developed or applied. Their evolution is studied to better understand the characteristics of current systems. After this, the main features of monitoring and activity interpretation systems are defined.Este trabajo presenta una revisión de los marcos de trabajo para monitorización e interpretación de actividades presentes en la literatura. Dependiendo del área donde dichos marcos se han desarrollado o aplicado, se han identificado diferentes necesidades. Además, para comprender mejor las particularidades de los marcos de trabajo, esta revisión realiza un recorrido por su evolución histórica. Posteriormente, se definirían las principales características de los sistemas de monitorización e interpretación de actividades.This work was partially supported by Spanish Ministerio de Economía y Competitividad / FEDER under DPI2016-80894-R grant

    A wireless sensor network system for border security and crossing detection

    Get PDF
    The protection of long stretches of countries’ borders has posed a number of challenges. Effective and continuous monitoring of a border requires the implementation of multi-surveillance technologies, such as Wireless Sensor Networks (WSN), that work as an integrated unit to meet the desired goals. The research presented in this thesis investigates the application of topologically Linear WSN (LWSNs) to international border monitoring and surveillance. The main research questions studied here are: What is the best form of node deployment and hierarchy? What is the minimum number of sensor nodes to achieve k− barrier coverage in a given belt region? iven an appropriate network density, how do we determine if a region is indeed k−barrier covered? What are the factors that affect barrier coverage? How to organise nodes into logical segments to perform in-network processing of data? How to transfer information from the networks to the end users while maintaining critical QoS measures such as timeliness and accuracy. To address these questions, we propose an architecture that specifies a mechanism to assign nodes to various network levels depending on their location. These levels are used by a cross-layer communication protocol to achieve data delivery at the lowest possible cost and minimal delivery delay. Building on this levelled architecture, we study the formation of weak and strong barriers and how they determine border crossing detection probability. We propose new method to calculate the required node density to provide higher intruder detection rate. Then, we study the effect of people movement models on the border crossing detection probability. At the data link layer, new energy balancing along with shifted MAC protocol are introduced to further increase the network lifetime and delivery speed. In addition, at network layer, a routing protocol called Level Division raph (LD ) is developed. LD utilises a complex link cost measurement to insure best QoS data delivery to the sink node at the lowest possible cost. The proposed system has the ability to work independently or cooperatively with other monitoring technologies, such as drowns and mobile monitoring stations. The performance of the proposed work is extensively evaluated analytically and in simulation using real-life conditions and parameters. The simulation results show significant performance gains when comparing LD to its best rivals in the literature Dynamic Source Routing. Compared to DSR, LD achieves higher performance in terms of average end-to-end delays by up to 95%, packet delivery ratio by up to 20%, and throughput by up to 60%, while maintaining similar performance in terms of normalised routing load and energy consumption

    A Review on Intelligent Monitoring and Activity Interpretation

    Get PDF
    corecore