2,354 research outputs found

    Analysis for time discrete approximations of blow-up solutions of semilinear parabolic equations

    Get PDF
    We prove a posteriori error estimates for time discrete approximations, for semilinear parabolic equations with solutions that might blow up in finite time. In particular we consider the backward Euler and the Crank–Nicolson methods. The main tools that are used in the analysis are the reconstruction technique and energy methods combined with appropriate fixed point arguments. The final estimates we derive are conditional and lead to error control near the blow up time

    Time--space white noise eliminates global solutions in reaction diffusion equations

    Full text link
    We prove that perturbing the reaction--diffusion equation ut=uxx+(u+)pu_t=u_{xx} + (u_+)^p (p>1p>1), with time--space white noise produces that solutions explodes with probability one for every initial datum, opposite to the deterministic model where a positive stationary solution exists.Comment: New results included. To be published in Physica

    Structures and waves in a nonlinear heat-conducting medium

    Full text link
    The paper is an overview of the main contributions of a Bulgarian team of researchers to the problem of finding the possible structures and waves in the open nonlinear heat conducting medium, described by a reaction-diffusion equation. Being posed and actively worked out by the Russian school of A. A. Samarskii and S.P. Kurdyumov since the seventies of the last century, this problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer Proceedings in Mathematics and Statistics, Numerical Methods for PDEs: Theory, Algorithms and their Application

    An adaptive space-time Newton–Galerkin approach for semilinear singularly perturbed parabolic evolution equations

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)In this article, we develop an adaptive procedure for the numerical solution of semilinear parabolic problems with possible singular perturbations. Our approach combines a linearization technique using Newton’s method with an adaptive discretization – which is based on a spatial finite element method and the backward Euler time-stepping scheme – of the resulting sequence of linear problems. Upon deriving a robust a posteriori error analysis, we design a fully adaptive Newton-Galerkin time-stepping algorithm. Numerical experiments underline the robustness and reliability of the proposed approach for various examples
    corecore