42 research outputs found

    An adaptive stigmergy-based system for evaluating technological indicator dynamics in the context of smart specialization

    Full text link
    Regional innovation is more and more considered an important enabler of welfare. It is no coincidence that the European Commission has started looking at regional peculiarities and dynamics, in order to focus Research and Innovation Strategies for Smart Specialization towards effective investment policies. In this context, this work aims to support policy makers in the analysis of innovation-relevant trends. We exploit a European database of the regional patent application to determine the dynamics of a set of technological innovation indicators. For this purpose, we design and develop a software system for assessing unfolding trends in such indicators. In contrast with conventional knowledge-based design, our approach is biologically-inspired and based on self-organization of information. This means that a functional structure, called track, appears and stays spontaneous at runtime when local dynamism in data occurs. A further prototyping of tracks allows a better distinction of the critical phenomena during unfolding events, with a better assessment of the progressing levels. The proposed mechanism works if structural parameters are correctly tuned for the given historical context. Determining such correct parameters is not a simple task since different indicators may have different dynamics. For this purpose, we adopt an adaptation mechanism based on differential evolution. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach, experimental setting and results.Comment: mail: [email protected]

    An adaptive stigmergy-based system for evaluating technological indicator dynamics in the context of smart specialization

    Get PDF
    Regional innovation is more and more considered an important enabler of welfare. It is no coincidence that the European Commission has started looking at regional peculiarities and dynamics, in order to focus Research and Innovation Strategies for Smart Specialization towards effective investment policies. In this context, this work aims to support policy makers in the analysis of innovation-relevant trends. We exploit a European database of the regional patent application to determine the dynamics of a set of technological innovation indicators. For this purpose, we design and develop a software system for assessing unfolding trends in such indicators. In contrast with conventional knowledge-based design, our approach is biologically-inspired and based on self-organization of information. This means that a functional structure, called track, appears and stays spontaneous at runtime when local dynamism in data occurs. A further prototyping of tracks allows a better distinction of the critical phenomena during unfolding events, with a better assessment of the progressing levels. The proposed mechanism works if structural parameters are correctly tuned for the given historical context. Determining such correct parameters is not a simple task since different indicators may have different dynamics. For this purpose, we adopt an adaptation mechanism based on differential evolution. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach, experimental setting and results

    Complex Adaptive Systems & Urban Morphogenesis:

    Get PDF
    This thesis looks at how cities operate as Complex Adaptive Systems (CAS). It focuses on how certain characteristics of urban form can support an urban environment's capacity to self-organize, enabling emergent features to appear that, while unplanned, remain highly functional. The research is predicated on the notion that CAS processes operate across diverse domains: that they are ‘generalized' or ‘universal'. The goal of the dissertation is then to determine how such generalized principles might ‘play out' within the urban fabric. The main thrust of the work is to unpack how elements of the urban fabric might be considered as elements of a complex system and then identify how one might design these elements in a more deliberate manner, such that they hold a greater embedded capacity to respond to changing urban forces. The research is further predicated on the notion that, while such responses are both imbricated with, and stewarded by human actors, the specificities of the material characteristics themselves matter. Some forms of material environments hold greater intrinsic physical capacities (or affordances) to enact the kinds of dynamic processes observed in complex systems than others (and can, therefore, be designed with these affordances in mind). The primary research question is thus:   What physical and morphological conditions need to be in place within an urban environment in order for Complex Adaptive Systems dynamics arise - such that the physical components (or ‘building blocks') of the urban environment have an enhanced capacity to discover functional configurations in space and time as a response to unfolding contextual conditions?   To answer this question, the dissertation unfolds in a series of parts. It begins by attempting to distill the fundamental dynamics of a Complex Adaptive System. It does so by means of an extensive literature review that examines a variety of highly cited ‘defining principles' or ‘key attributes' of CAS. These are cross-referenced so as to extract common features and distilled down into six major principles that are considered as the generalized features of any complex system, regardless of domain. In addition, this section considers previous urban research that engages complexity principles in order to better position the distinctive perspective of this thesis. This rests primarily on the dissertation's focus on complex urban processes that occur by means of materially enabled in situ processes. Such processes have, it is argued, remained largely under-theorized. The opening section presents introductory examples of what might be meant by a ‘materially enabling' environment.   The core section of the research then undertakes a more detailed unpacking of how complex processes can be understood as having a morphological dimension. This section begins by discussing, in broad terms, the potential ‘phase space' of a physical environment and how this can be expanded or limited according to a variety of factors. Drawing insights from related inquiries in the field of Evolutionary Economic Geography, the research argues that, while emergent capacity is often explored in social, economic, or political terms, it is under-theorized in terms of the concrete physical sub-strata that can also act to ‘carry' or ‘moor' CAS dynamics. This theme is advanced in the next article, where a general framework for speaking about CAS within urban environments is introduced. This framework borrows from the terms for ‘imageability' that were popularized by Kevin Lynch: paths, edges, districts, landmarks, and nodes. These terms are typically associated with physical or ‘object-like features' of the urban environment – that is to say, their image. The terminology is then co-opted such that it makes reference not simply to physical attributes, but rather to the complex processes these attributes enable. To advance this argument, the article contrasts the static and ‘imageable' qualities of New Urbanism projects with the ‘unfolding' and dynamic qualities of complex systems - critiquing NU proponents as failing to appreciate the underlying forces that generate the environments they wish to emulate. Following this, the efficacy of the re-purposed ‘Lynchian' framework is tested using the case study of Istanbul's Grand Bazaar. Here, specific elements of the Bazaar's urban fabric are positioned as holding material agency that enables particular emergent spatial phenomena to manifest. In addition, comparisons are drawn between physical dynamics unfolding within the Bazaar's morphological setting (leading to emergent merchant districts) and parallel dynamics explored within Evolutionary Economic Geography).   The last section of the research extends this research to consider digitally augmented urban elements that hold an enhanced ability to receive and convey information. A series of speculative thought-experiments highlight how augmented urban entities could employ CAS dynamics to ‘solve for' different kinds of urban optimization scenarios, leading these material entities to self-organize (with their users) and discover fit regimes. The final paper flips the perspective, considering how, not only material agency, but also human agency is being augmented by new information processing technologies (smartphones), and how this can lead to new dances of agency that in turn generate novel emergent outcomes.   The dissertation is based on a compilation of articles that have, for the most part, been published in academic journals and all the research has been presented at peer-reviewed academic conferences. An introduction, conclusion, and explanatory transitions between sections are provided in order to clarify the narrative thread between the sections and the articles. Finally, a brief ‘coda' on the spatial dynamics afforded by Turkish Tea Gardens is offered

    Degradation stage classification via interpretable feature learning

    Get PDF
    Predictive maintenance (PdM) advocates for the usage of machine learning technologies to monitor asset's health conditions and plan maintenance activities accordingly. However, according to the specific degradation process, some health-related measures (e.g. temperature) may be not informative enough to reliably assess the health stage. Moreover, each measure needs to be properly treated to extract the information linked to the health stage. Those issues are usually addressed by performing a manual feature engineering, which results in high management cost and poor generalization capability of those approaches. In this work, we address this issue by coupling a health stage classifier with a feature learning mechanism. With feature learning, minimally processed data are automatically transformed into informative features. Many effective feature learning approaches are based on deep learning. With those, the features are obtained as a non-linear combination of the inputs, thus it is difficult to understand the input's contribution to the classification outcome and so the reasoning behind the model. Still, these insights are increasingly required to interpret the results and assess the reliability of the model. In this regard, we propose a feature learning approach able to (i) effectively extract high-quality features by processing different input signals, and (ii) provide useful insights about the most informative domain transformations (e.g. Fourier transform or probability density function) of the input signals (e.g. vibration or temperature). The effectiveness of the proposed approach is tested with publicly available real-world datasets about bearings' progressive deterioration and compared with the traditional feature engineering approach

    Modeling and Communicating Flexibility in Smart Grids Using Artificial Neural Networks as Surrogate Models

    Get PDF
    Increasing shares of renewable energies and the transition towards electric vehicles pose major challenges to the energy system. In order to tackle these in an economically sensible way, the flexibility of distributed energy resources (DERs), such as battery energy storage systems, combined heat and power plants, and heat pumps, needs to be exploited. Modeling and communicating this flexibility is a fundamental step when trying to achieve control over DERs. The literature proposes and makes use of many different approaches, not only for the exploitation itself, but also in terms of models. In the first step, this thesis presents an extensive literature review and a general framework for classifying exploitation approaches and the communicated models. Often, the employed models only apply to specific types of DERs, or the models are so abstract that they neglect constraints and only roughly outline the true flexibility. Surrogate models, which are learned from data, can pose as generic DER models and may potentially be trained in a fully automated process. In this thesis, the idea of encoding the flexibility of DERs into ANNs is systematically investigated. Based on the presented framework, a set of ANN-based surrogate modeling approaches is derived and outlined, of which some are only applicable for specific use cases. In order to establish a baseline for the approximation quality, one of the most versatile identified approaches is evaluated in order to assess how well a set of reference models is approximated. If this versatile model is able to capture the flexibility well, a more specific model can be expected to do so even better. The results show that simple DERs are very closely approximated, and for more complex DERs and combinations of multiple DERs, a high approximation quality can be achieved by introducing buffers. Additionally, the investigated approach has been tested in scheduling tasks for multiple different DERs, showing that it is indeed possible to use ANN-based surrogates for the flexibility of DERs to derive load schedules. Finally, the computational complexity of utilizing the different approaches for controlling DERs is compared

    Proposition d’une architecture holonique auto-organisée et évolutive pour le pilotage des systèmes de production

    Get PDF
    The manufacturing world is being deeply challenged with a set of ever demanding constraints where from one side, the costumers are requiring products to be more customizable, with higher quality at lower prices, and on other side, companies have to deal on a daily basis with internal disturbances that range from machine breakdown to worker absence and from demand fluctuation to frequent production changes. This dissertation proposes a manufacturing control architecture, following the holonic principles developed in the ADAptive holonic COntrol aRchitecture (ADACOR) and extending it taking inspiration in evolutionary theories and making use of self- organization mechanisms. The use of evolutionary theories enrich the proposed control architecture by allowing evolution in two distinct ways, responding accordingly to the type and degree of the disturbance that appears. The first component, named behavioural self- organization, allows each system’s entity to dynamically adapt its internal behaviour, addressing small disturbances. The second component, named structural self-organization, addresses bigger disturbances by allowing the system entities to re-arrange their rela- tionships, and consequently changing the system in a structural manner. The proposed self-organized holonic manufacturing control architecture was validated at a AIP-PRIMECA flexible manufacturing cell. The achieved experimental results have also shown an improvement of the key performance indicators over the hierarchical and heterarchical control architecture.Le monde des entreprises est profondément soumis à un ensemble de contraintes toujours plus exigeantes provenant d’une part des clients, exigeant des produits plus personnalisables, de qualité supérieure et à faible coût, et d’autre part des aléas internes auxentreprises, comprenant les pannes machines, les défaillances humaines, la fluctuation de la demande, les fréquentes variations de production. Cette thèse propose une architecture de contrôle de systèmes de production, basée sur les principes holoniques développées dans l’architecture ADACOR (ADAptive holonic COntrol aRchitecture), et l’étendant en s’inspirant des théories de l’évolution et en utilisant des mécanismes d’auto-organisation. L’utilisation des théories de l’évolution enrichit l’architecture de contrôle en permettant l’évolution de deux manières distinctes, en réponse au type et au degré de la perturbation apparue. Le premier mode d’adaptation, appelé auto-organisation comportementale, permet à chaque entité qui compose le système d’adapter dynamiquement leur comportement interne, gérant de cette façon de petites perturbations. Le second mode, nommé auto-organisation structurelle, traite de plus grandes perturbations, en permettant aux entités du système de ré-organiser leurs relations, et par conséquent modifier structurellement le système. L’architecture holonique auto-organisée de contrôle de systèmes de production proposée dans cette thèse a été validée sur une cellule de production flexible AIP-PRIMECA. Les résultats ont montré une amélioration des indicateurs clés de performance par rapport aux architectures de contrôle hiérarchiques et hétérarchiques
    corecore